HEATER & AIR CONDITIONER

SECTION HA

(II

MA

EM

LC

EC

FE

GL

MT

AT

AX

SU

BR

ST

RS

BT

HA

SC

EL

CONTENTS

P

AUIO
PRECAUTIONS
Supplemental Restraint System (SRS) "AIR
BAG" and "SEAT BELT PRE-TENSIONER"3
Precautions for Working with HFC-134a (R-134a)3
General Refrigerant Precautions4
Precautions for Refrigerant Connection4
Precautions for Servicing Compressor8
Precautions for Service Equipment8
Wiring Diagrams and Trouble Diagnosis10
PREPARATION11
Special Service Tools11
HFC-134a (R-134a) Service Tools and
Equipment12
DESCRIPTION 15
Refrigeration System15
V-6 Variable Displacement Compressor16
Component Layout21
Introduction22
Features22
Overview of Control System25
Control Operation25
Discharge Air Flow27
System Description28
TROUBLE DIAGNOSES29
Component Location29
Circuit Diagram31
Wiring Diagram - A/C, A32
Auto Amp. Terminals and Reference Value35
Self-diagnosis37
How to Perform Trouble Diagnoses for Quick
and Accurate Repair47
Operational Check48
A/C System51
Mode Door Motor54
Air Mix Door Motor61
Intake Door Motor64
Blower Motor67

Magnet Clutch	76
Insufficient Cooling	
Insufficient Heating	
Noise	
Self-diagnosis	
Memory Function	
ECON (ECONOMY) Mode	
Ambient Sensor Circuit	
In-vehicle Sensor Circuit	
Sunload Sensor Circuit	
Intake Sensor Circuit	
Air Mix Door Motor PBR Circuit	
SERVICE PROCEDURE	
HFC-134a (R-134a) Service Procedure	
Maintenance of Lubricant Quantity in	
Compressor	110
Compressor	
Compressor Clutch	
Heater Unit (Heater Core)	
Blower and Cooling Unit (A/C Evaporator)	
Refrigerant Lines	
Belt	
Idle Air Control Valve (IACV) - Auxiliary Air	123
	100
Control (AAC) Valve SERVICE DATA AND SPECIFICATIONS (SDS)	
` ,	
Auto	124
MANUAL	

Control (AAC) valve123
ERVICE DATA AND SPECIFICATIONS (SDS)124
Auto124
MANUAL
RECAUTIONS125
Supplemental Restraint System (SRS) "AIR
BAG" and "SEAT BELT PRE-TENSIONER"125
Precautions for Working with HFC-134a (R-134a) .125
General Refrigerant Precautions126
Precautions for Refrigerant Connection126
Precautions for Servicing Compressor130
Precautions for Service Equipment130
Wiring Diagrams and Trouble Diagnosis132
REPARATION 133

CONTENTS (Cont'd)

Special Service Tools	133
HFC-134a (R-134a) Service Tools and	
Equipment	134
DESCRIPTION	137
Refrigeration System	137
V-6 Variable Displacement Compressor	
Component Layout	143
Control Operation	
Discharge Air Flow	
System Description	146
TROUBLE DIAGNOSES	
Component Location	147
Circuit Diagram - Air Conditioner	
Wiring Diagram - A/C, M	
How to Perform Trouble Diagnoses for Quick	
and Accurate Repair	154
Operational Check	155
A/C System	
Intake Door	
Blower Motor	

Insufficient Cooling	170
Insufficient Heating	178
Air Mix Door	179
Mode Door	183
Magnet Clutch	186
Noise	193
SERVICE PROCEDURE	194
HFC-134a (R-134a) Service Procedure	194
Maintenance of Lubricant Quantity in	
Compressor	196
Compressor	200
Compressor Clutch	200
Heater Unit (Heater Core)	204
Blower and Cooling Unit (A/C Evaporator)	205
Refrigerant Lines	206
Belt	210
Idle Air Control Valve (IACV) - Auxiliary Air	
Control (AAC) Valve	210
SERVICE DATA AND SPECIFICATIONS (SDS	
•	-

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER" used along with a seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. The SRS system composition which is available to NISSAN MODEL A33 is as follows (The composition varies according to optional equipment.):

MA

- For a frontal collision
 - The Supplemental Restraint System consists of driver air bag module (located in the center of the steering wheel), front passenger air bag module (located on the instrument panel on passenger side), seat belt pre-tensioners, a diagnosis sensor unit, warning lamp, wiring harness and spiral cable.

EM

- For a side collision
 - The Supplemental Restraint System consists of front side air bag module (located in the outer side of front seat), satellite sensor, diagnosis sensor unit (one of components of air bags for a frontal collision), wiring harness, warning lamp (one of components of air bags for a frontal collision).

LC EC

Information necessary to service the system safely is included in the RS section of this Service Manual.

WARNING:

To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death
in the event of a collision which would result in air bag inflation, all maintenance should be performed by an authorized NISSAN dealer.

 Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by intentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the RS section.

MT

• Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. Spiral cable and wiring harnesses covered with yellow insulation or tape either just before the harness connectors or for the complete harness are related to the SRS.

AT

Precautions for Working with HFC-134a (R-134a)

AX

WARNING:

CFC-12 (R-12) refrigerant and HFC-134a (R-134a) refrigerant are not compatible. If the refrigerants are mixed and compressor failure is likely to occur, refer to "CONTAMINATED REFRIGERANT" below. To determine the purity of HFC-134a (R-134a) in the vehicle and recovery tank, use Refrigerant Recovery/Recycling Recharging equipment (ACR4) (J-39500-NI) and Refrigerant Identifier.

aa

Use only specified lubricant for the HFC-134a (R-134a) A/C system and HFC-134a (R-134a) components. If lubricant other than that specified is used, compressor failure is likely to occur.

@T

• The specified HFC-134a (R-134a) lubricant rapidly absorbs moisture from the atmosphere. The following handling precautions must be observed:

a) When removing refrigerant components from a vehicle, immediately cap (seal) the component to minimize the entry of moisture from the atmosphere.

18

b) When installing refrigerant components to a vehicle, do not remove the caps (unseal) until just before connecting the components. Connect all refrigerant loop components as quickly as possible to minimize the entry of moisture into system.

9T

c) Only use the specified lubricant from a sealed container. Immediately reseal containers of lubricant. Without proper sealing, lubricant will become moisture saturated and should not be used.

HA

d) Avoid breathing A/C refrigerant and lubricant vapor or mist. Exposure may irritate eyes, nose and throat. Remove R-134a from the A/C system, using certified service equipment meeting requirements of SAE J2210 (R-134a recycling equipment), or J2209 (R-134a recovery equipment). If accidental system discharge occurs, ventilate work area before resuming service. Additional health and safety information may be obtained from refrigerant and lubricant manufacturers.

SC

e) Do not allow lubricant (Nissan A/C System Oil Type S) to come in contact with styrofoam parts. Damage may result.

CONTAMINATED REFRIGERANT

NFHA0154S01

If a refrigerant other than pure R-134a is identified in a vehicle, your options are:

 Explain to the customer that environmental regulations prohibit the release of contaminated refrigerant into the atmosphere. Precautions for Working with HFC-134a (R-134a) (Cont'd)

- Explain that recovery of the contaminated refrigerant could damage your service equipment and refrigerant supply.
- Suggest the customer return the vehicle to the location of previous service where the contamination may have occurred.
- If you choose to perform the repair, recover the refrigerant using only dedicated equipment and containers. Do not recover contaminated refrigerant into your existing service equipment. If your facility does not have dedicated recovery equipment, you may contact a local refrigerant product retailer for available service. This refrigerant must be disposed of in accordance with all federal and local regulations. In addition, replacement of all refrigerant system components on the vehicle is recommended.
- If the vehicle is within the warranty period, the air conditioner warranty is void. Please contact Nissan Customer Affairs for further assistance.

General Refrigerant Precautions

NFHA0155

WARNING:

- Do not release refrigerant into the air. Use approved recovery/recycling equipment to capture the refrigerant every time an air conditioning system is discharged.
- Always wear eye and hand protection (goggles and gloves) when working with any refrigerant or air conditioning system.
- Do not store or heat refrigerant containers above 52°C (125°F).
- Do not heat a refrigerant container with an open flame; if container warming is required, place the bottom of the container in a warm pail of water.
- Do not intentionally drop, puncture, or incinerate refrigerant containers.
- Keep refrigerant away from open flames: poisonous gas will be produced if refrigerant burns.
- Refrigerant will displace oxygen, therefore be certain to work in well ventilated areas to prevent suffocation.
- Do not pressure test or leak test HFC-134a (R-134a) service equipment and/or vehicle air conditioning systems with compressed air during repair. Some mixtures of air and R-134a have been shown to be combustible at elevated pressures. These mixtures, if ignited, may cause injury or property damage. Additional health and safety information may be obtained from refrigerant manufacturers.

Precautions for Refrigerant Connection

NFHA0156

A new type refrigerant connection has been introduced to all refrigerant lines except the following location.

Expansion valve to cooling unit

FEATURES OF NEW TYPE REFRIGERANT CONNECTION

NFHA0156S

- The O-ring has been relocated. It has also been provided with a groove for proper installation. This eliminates the chance of the O-ring being caught in, or damaged by, the mating part. The sealing direction of the O-ring is now set vertically in relation to the contacting surface of the mating part to improve sealing characteristics.
- The reaction force of the O-ring will not occur in the direction that causes the joint to pull out, thereby facilitating piping connections.

PRECAUTIONS

G[

MA

EM

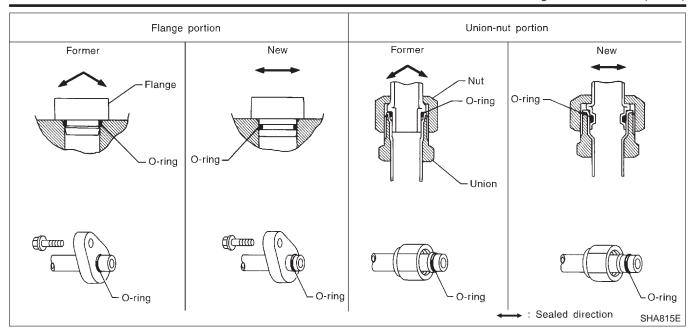
LC

EC

FE

CL

MT


AT

 $\mathbb{A}\mathbb{X}$

SU

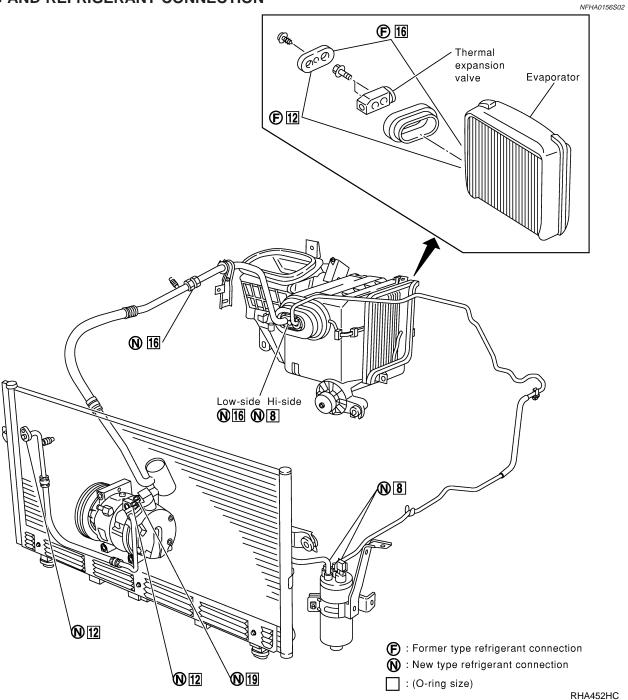
BR

Precautions for Refrigerant Connection (Cont'd)

ST

RS

BT


НА

SC

EL

O-RING AND REFRIGERANT CONNECTION

CAUTION:

The new and former refrigerant connections use different O-ring configurations. Do not confuse O-rings since they are not interchangeable. If a wrong O-ring is installed, refrigerant will leak at, or around, the connection.

O-Ring Part Numbers and Specifications

				NFHA015650201
Connection type	O-ring size	Part number	D mm (in)	W mm (in)
New	8	92471 N8210	6.8 (0.268)	1.85 (0.0728)
Former	0	92470 N8200	6.07 (0.2390)	1.78 (0.0701)
New	12	92472 N8210	10.9 (0.429)	2.43 (0.0957)
Former	12	92475 71L00	11.0 (0.433)	2.4 (0.094)
New	16	92473 N8210	13.6 (0.535)	2.43 (0.0957)
Former	10	92475 72L00	14.3 (0.563)	2.3 (0.0906)
New	10	92474 N8210	16.5 (0.650)	2.43 (0.0957)
Former	19	92477 N8200	17.12 (0.6740)	1.78 (0.0701)

WARNING:

Make sure all refrigerant is discharged into the recycling equipment and the pressure in the system is less than atmospheric pressure. Then gradually loosen the discharge side hose fitting and remove

CAUTION:

When replacing or cleaning refrigerant cycle components, observe the following.

SHA814E

- When the compressor is removed, store it in the same position as it is when mounted on the car. Failure to do so will cause lubricant to enter the low pressure chamber.
- When connecting tubes, always use a torque wrench and a back-up wrench.
- After disconnecting tubes, immediately plug all openings to prevent entry of dirt and moisture.
- When installing an air conditioner in the vehicle, connect the pipes as the final stage of the operation. Do not remove the seal caps of pipes and other components until just before required for connection.
- Allow components stored in cool areas to warm to working area temperature before removing seal caps. This prevents condensation from forming inside A/C components.
- Thoroughly remove moisture from the refrigeration system before charging the refrigerant.
- Always replace used O-rings.
- When connecting tube, apply lubricant to circle of the O-rings shown in illustration. Be careful not to apply lubricant to threaded portion.

Lubricant name: Nissan A/C System Oil Type S

Part number: KLH00-PAGS0

- O-ring must be closely attached to dented portion of tube.
- When replacing the O-ring, be careful not to damage O-ring and tube.
- Connect tube until you hear it click, then tighten the nut or bolt by hand until snug. Make sure that the O-ring is installed to tube correctly.
- After connecting line, conduct leak test and make sure that there is no leakage from connections. When the gas leaking point is found, disconnect that line and replace the O-ring. Then tighten connections of seal seat to the specified torque.

MA

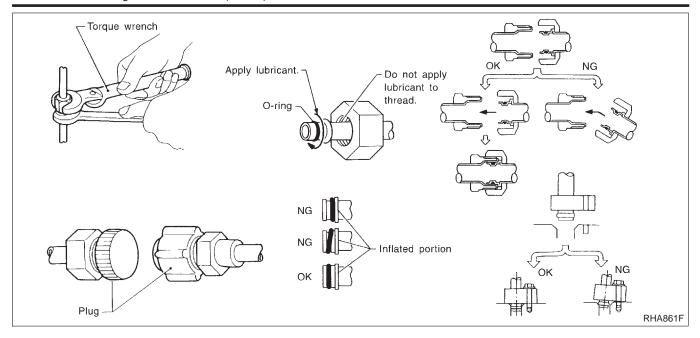
LC

EC

CL

MT

AT


ST

HA

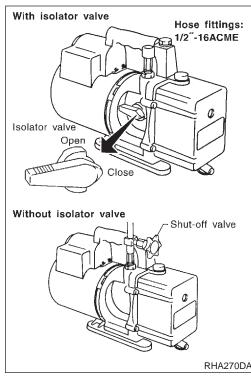
SC

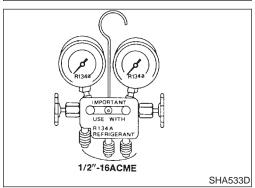
EL

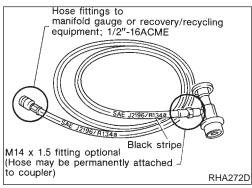
Precautions for Servicing Compressor

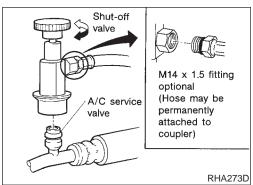
NFHA0157

- Plug all openings to prevent moisture and foreign matter from entering.
- When the compressor is removed, store it in the same position as it is when mounted on the car.
- When replacing or repairing compressor, follow "Maintenance of Lubricant Quantity in Compressor" exactly. Refer to HA-110.
- Keep friction surfaces between clutch and pulley clean. If the surface is contaminated, with lubricant, wipe it off by using a clean waste cloth moistened with thinner.
- After compressor service operation, turn the compressor shaft by hand more than five turns in both directions. This will equally distribute lubricant inside the compressor. After the compressor is installed, let the engine idle and operate the compressor for one hour.
- After replacing the compressor magnet clutch, apply voltage to the new one and check for normal operation.


Precautions for Service Equipment RECOVERY/RECYCLING EQUIPMENT


NFHA0158


Be certain to follow the manufacturers instructions for machine operation and machine maintenance. Never introduce any refrigerant other than that specified into the machine.


ELECTRONIC LEAK DETECTOR

Be certain to follow the manufacturer's instructions for tester operation and tester maintenance.

VACUUM PUMP

The lubricant contained inside the vacuum pump is not compatible with the specified lubricant for HFC-134a (R-134a) A/C systems. The vent side of the vacuum pump is exposed to atmospheric pressure. So the vacuum pump lubricant may migrate out of the pump into the service hose. This is possible when the pump is switched off after evacuation (vacuuming) and hose is connected

To prevent this migration, use a manual valve placed near the hose-to-pump connection, as follows.

- Usually vacuum pumps have a manual isolator valve as part of the pump. Close this valve to isolate the service hose from the pump.
- For pumps without an isolator, use a hose equipped with a manual shut-off valve near the pump end. Close the valve to isolate the hose from the pump.
- If the hose has an automatic shut off valve, disconnect the hose from the pump. As long as the hose is connected, the valve is open and lubricating oil may migrate.

Some one-way valves open when vacuum is applied and close under a no vacuum condition. Such valves may restrict the pump's ability to pull a deep vacuum and are not recommended.

MANIFOLD GAUGE SET

Be certain that the gauge face indicates R-134a or 134a. Be sure the gauge set has 1/2"-16 ACME threaded connections for service hoses. Confirm the set has been used only with refrigerant HFC-134a (R-134a) and specified lubricants.

SERVICE HOSES

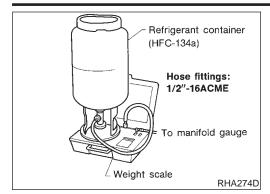
Be certain that the service hoses display the markings described (colored hose with black stripe). All hoses must include positive shut off devices (either manual or automatic) near the end of the hoses opposite the manifold gauge.

SERVICE COUPLERS

Never attempt to connect HFC-134a (R-134a) service couplers to an CFC-12 (R-12) A/C system. The HFC-134a (R-134a) couplers will not properly connect to the CFC-12 (R-12) system. However, if an improper connection is attempted, discharging and contamination may occur.

Shut-off valve rotation	A/C service valve
Clockwise	Open
Counterclockwise	Close

MA


EC

MT

AX

SC

REFRIGERANT WEIGHT SCALE

Verify that no refrigerant other than HFC-134a (R-134a) and specified lubricants have been used with the scale. If the scale controls refrigerant flow electronically, the hose fitting must be 1/2"-16 ACME.

CALIBRATING ACR4 WEIGHT SCALE

NFHA0158S08

Calibrate the scale every three months.

To calibrate the weight scale on the ACR4 (J-39500-INF):

- 1. Press **Shift/Reset** and **Enter** at the same time.
- 2. Press 8787. "A1" will be displayed.
- Remove all weight from the scale.
- Press 0, then press Enter. "0.00" will be displayed and change to "A2".
- 5. Place a known weight (dumbbell or similar weight), between 4.5 and 8.6 kg (10 and 19 lb) on the center of the weight scale.
- 6. Enter the known weight using four digits. (Example 10 lb = 10.00, 10.5 lb = 10.50)
- 7. Press **Enter** the display returns to the vacuum mode.
- 8. Press Shift/Reset and Enter at the same time.
- 9. Press 6 the known weight on the scale is displayed.
- 10. Remove the known weight from the scale. "0.00" will be displayed.
- 11. Press **Shift/Reset** to return the ACR4 to the program mode.

CHARGING CYLINDER

NFHA0158S0

Using a charging cylinder is not recommended. Refrigerant may be vented into air from cylinder's top valve when filling the cylinder with refrigerant. Also, the accuracy of the cylinder is generally less than that of an electronic scale or of quality recycle/recharge equipment.

Wiring Diagrams and Trouble Diagnosis

NFHA0159

When you read wiring diagrams, refer to the following:

- GI-11, "HOW TO READ WIRING DIAGRAMS" in GI section
- EL-10, "Wiring Diagram POWER —" for power distribution circuit in EL section

When you perform trouble diagnosis, refer to the following:

- GI-36, "HOW TO FOLLOW TEST GROUP IN TROUBLE DIAG-NOSIS" in GI section
- GI-25, "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT" in GI section

PREPARATION

The actual shapes of Ke	Special Servi ent-Moore tools may differ from those of special se		NFHA0160	© ⁿ
Tool number (Kent-Moore No.) Tool name	Description			GI Mz
KV99106100 (J-41260) Clutch disc wrench	Post in the second seco	Removing center bolt		EN
	NT232			E
				FE
	When replacing the magnet clutch in the above compressor, use a clutch disc wrench with the pin side on the clutch disc			CI M'
	to remove it. Pin Clutch disc wrench			AT
	NT378	l		A\
KV99232340 (J-38874) or		Removing clutch disc		SI
KV992T0001 (—) Clutch disc puller				B
	NT376			\$1
KV99106200 (J-41261) Pulley installer		Installing pulley		R
	NT235			B

HFC-134a (R-134a) Service Tools and Equipment

Never mix HFC-134a refrigerant and/or its specified lubricant with CFC-12 (R-12) refrigerant and/or its lubricant

Separate and non-interchangeable service equipment must be used for handling each type of refrigerant/lubricant.

Refrigerant container fittings, service hose fittings and service equipment fittings (equipment which handles refrigerant and/or lubricant) are different between CFC-12 (R-12) and HFC-134a (R-134a). This is to avoid mixed use of the refrigerants/lubricant.

Adapters that convert one size fitting to another must never be used: refrigerant/lubricant contamination will occur and compressor failure will result.

Tool number (Kent-Moore No.) Tool name	Description	
HFC-134a (R-134a) refrigerant		Container color: Light blue Container marking: HFC-134a (R-134a) Fitting size: Thread size Large container 1/2"-16 ACME
	NT196	
KLH00-PAGS0 (—) Nissan A/C System Oil Type S	NISSAN	Type: Poly alkylene glycol oil (PAG), type S Application: HFC-134a (R-134a) swash plate (piston) compressors (Nissan only) Lubricity: 40 m ℓ (1.4 US fl oz, 1.4 lmp fl oz)
	NT197	
(J-39500-NI) Recovery/Recycling Recharging equipment (ACR4)		Function: Refrigerant Recovery and Recycling and Recharging
(1.44005)	NT195	D
(J-41995) Electrical leak detector		Power supply: • DC 12V (Cigarette lighter)
	AHA281A	

PREPARATION

AUTO

HFC-134a (R-134a) Service Tools and Equipment (Cont'd)

		TPC-134a (K-134a) Service 100is and Equipment (Cont a)	•
Tool number (Kent-Moore No.) Tool name	Description		- (
(J-39183) Manifold gauge set (with hoses and cou- plers)		Identification: • The gauge face indicates R-134a. Fitting size: Thread size • 1/2"-16 ACME	• [
	NT199		- [
Service hoses High side hose (J-39501-72) Low side hose (J-39502-72)		Hose color: Low hose: Blue with black stripe High hose: Red with black stripe Utility hose: Yellow with black stripe or green with black stripe	[
Utility hose (J-39476-72)	NT201	Hose fitting to gauge: ■ 1/2"-16 ACME	(
Service couplers • High side coupler (J-39500-20) • Low side coupler (J-39500-24)		 Hose fitting to service hose: M14 x 1.5 fitting is optional or permanently attached. 	- [
	NT202		
(J-39650)		For measuring of refrigerant	_ /
Refrigerant weight scale	\$ B o	Fitting size: Thread size ■ 1/2"-16 ACME	(
	NT200		_
(J-39649) Vacuum pump (Including the isolator		Capacity: Air displacement: 4 CFMMicron rating: 20 microns	
valve)		 Oil capacity: 482 g (17 oz) Fitting size: Thread size 1/2"-16 ACME 	
	NT203		

ЦΛ

HFC-134a (R-134a) Service Tools and Equipment (Cont'd)

COMMERCIAL SERVICE TOOL

		NFHA0161S01
Tool name	Description	
Refrigerant identifier equipment	NIZ65	For checking refrigerant purity and for system contamination
equipment		tamination

DESCRIPTION

Refrigeration System

REFRIGERATION CYCLE

Refrigerant Flow

NFHA0162

FHA0162S01

The refrigerant flows in the standard pattern, that is, through the compressor, the condenser, the liquid tank, through the evaporator, and back to the compressor. The refrigerant evaporation through the evaporator coil is controlled by an externally equalized expansion valve, located inside the evaporator case.

coil MA

Freeze Protection

HA0162S02

Under normal operating conditions, when the A/C is switched on, the compressor runs continuously, and the evaporator pressure, and therefore, temperature is controlled by the V-6 variable displacement compressor to prevent freeze up.

LC

Refrigerant System Protection

NFHA0162S03

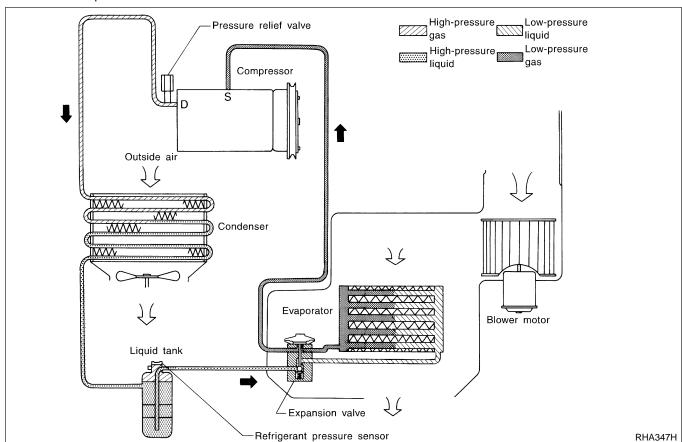
Refrigerant Pressure Sensor

NFHA0162S0301

The refrigerant system is protected against excessively high or low pressures by the refrigerant pressure sensor, located on the liquid tank. If the system pressure rises above, or falls below the specifications, the refrigerant pressure sensor detects the pressure inside the refrigerant line and sends the voltage signal to the ECM. ECM makes the A/C relay go OFF and stops the compressor when pressure on the high pressure side detected by refrigerant pressure sensor is over about 2,746 kPa (28 kg/cm², 398 psi), psi or below about 177 kPa (1.8 kg/cm², 26 psi).

FE

GL


MT

Pressure Relief Valve

FHA0162S0302

The refrigerant system is also protected by a pressure relief valve, located in the rear head of the compressor. When the pressure of refrigerant in the system increases to an abnormal level [more than 3,727 kPa (38 kg/cm², 540 psi)], the release port on the pressure relief valve automatically opens and releases refrigerant into the atmosphere.

AT

SU

AX

ST

RS

BT

HA

SC

EL

V-6 Variable Displacement Compressor

GENERAL INFORMATION

NEHA0163

- 1. The V-6 variable compressor differs from previous units. The vent temperatures of the V-6 variable compress do not drop too far below 5°C (41°F) when:
- evaporator intake air temperature is less than 20°C (68°F)
- engine is running at speeds less than 1,500 rpm.
 This is because the V.6 compressor provides a m
 - This is because the V-6 compressor provides a means of "capacity" control.
- 2. The V-6 variable compressor provides refrigerant control under varying conditions. During cold winters, it may not produce high refrigerant pressure discharge (compared to previous units) when used with air conditioning systems.
- 3. A "clanking" sound may occasionally be heard during refrigerant charge. The sound indicates that the tilt angle of the swash plate has changed and is not a problem.
- 4. For air conditioning systems with the V-6 compressor, the clutch remains engaged unless: the system main switch, fan switch or ignition switch is turned OFF. When ambient (outside) temperatures are low or when the amount of refrigerant is insufficient, the clutch is disengaged to protect the compressor.
- 5. A constant range of suction pressure is maintained when engine speed is greater than a certain value. It normally ranges from 147 to 177 kPa (1.5 to 1.8 kg/cm², 21 to 26 psi) under varying conditions. In previous compressors, however, suction pressure was reduced with increases in engine speed.

DESCRIPTION

=NFHA0164

MA

LC

EC

FE

GL

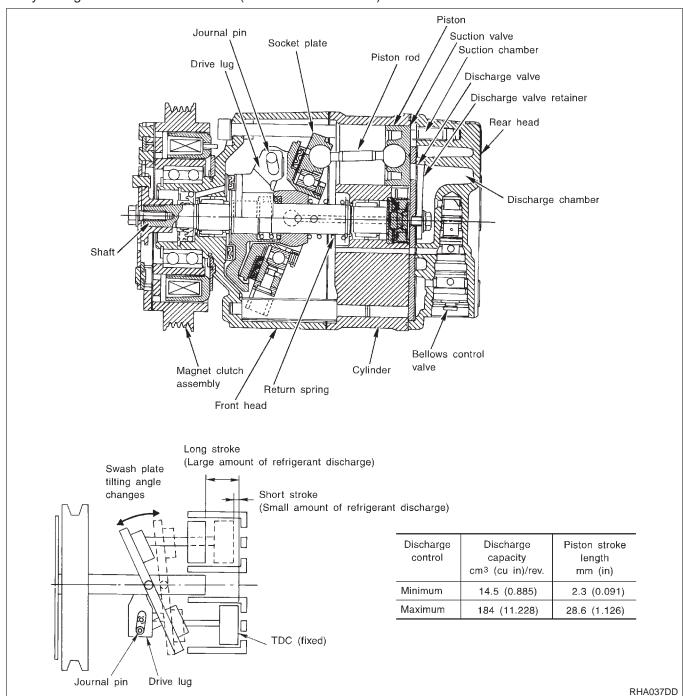
MT

AT

AX

ST

BT


HA

SC

EL

General The variable compressor is basically a swash plate type that changes piston stroke in response to the required cooling capacity.

The tilt of the swash plate allows the piston's stroke to change so that refrigerant discharge can be continuously changed from 14.5 to 184 cm³ (0.885 to 11.228 cu in).

Operation

1. Operation Control Valve

=NFHA0164S02

NFHA0164S0201

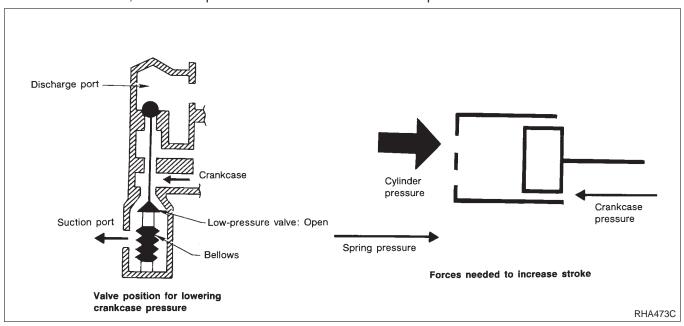
Operation control valve is located in the suction port (low-pressure) side, and opens or closes in response to changes in refrigerant suction pressure.

Operation of the valve controls the internal pressure of the crankcase.

The angle of the swash plate is controlled between the crankcase's internal pressure and the piston cylinder pressure.

2. Maximum Cooling

NFHA0164S0202


Refrigerant pressure on the low-pressure side increases with an increase in heat loads.

When this occurs, the control valve's bellows compress to open the low-pressure side valve and close the high-pressure side valve.

This causes the following pressure changes:

- the crankcase's internal pressure to equal the pressure on the low-pressure side;
- the cylinder's internal pressure to be greater than the crankcase's internal pressure.

Under this condition, the swash plate is set to the maximum stroke position.

3. Capacity Control

- Refrigerant pressure on suction side is low during high speed driving or when ambient or interior tempera-
- The bellows expands when refrigerant pressure on the suction pressure side drops below approximately 177 kPa (1.8 kg/cm², 26 psi).

MA Since suction pressure is low, it makes the suction port close and the discharge port open. Thus, crank-

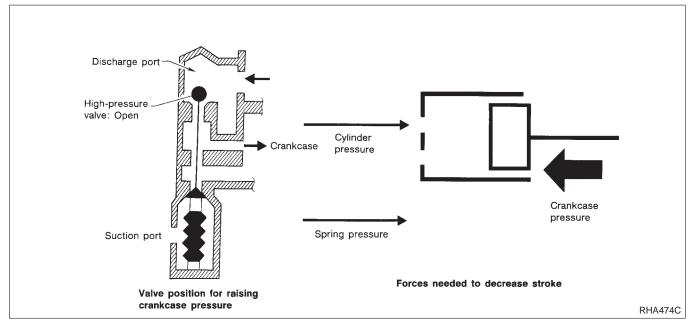
case pressure becomes high as high pressure enters the crankcase. The force acts around the journal pin near the swash plate, and is generated by the pressure difference before and behind the piston.

EM

The drive lug and journal pin are located where the piston generates the highest pressure. Piston pressure is between suction pressure Ps and discharge pressure Pd, which is near suction pressure Ps. If crankcase pressure Pc rises due to capacity control, the force around the journal pin makes the swash plate angle decrease and also the piston stroke decrease. In other words, crankcase pressure increase triggers pressure difference between the piston and the crankcase. The pressure difference changes the angle of the swash plate.

EC

GL

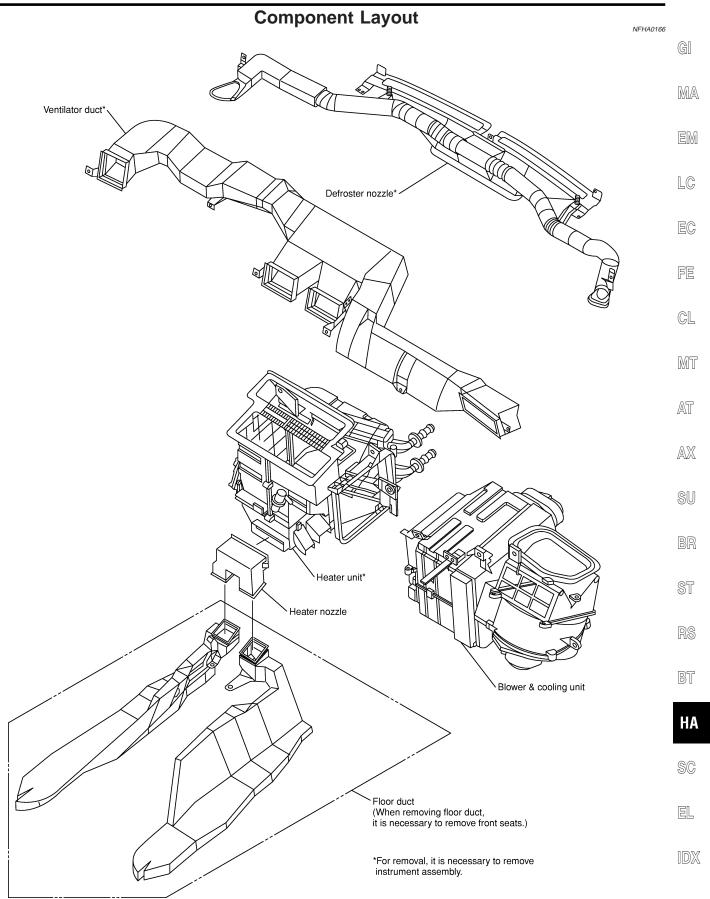

MT

AT

AX

HA

SC

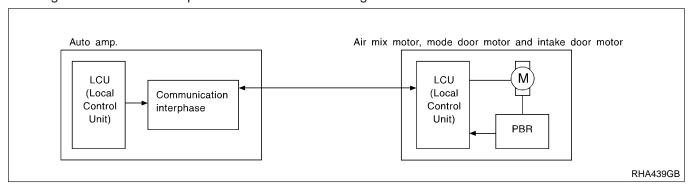

IACV-AAC CONTROL SYSTEM

Operation

=NFHA0165

When the air conditioner is OFF, the ECM detects the load applied to the engine, and controls the IACV-AAC valve to adjust the engine idling speed to the appropriate rpm by supplying additional air from the IACV-AAC valve.

When the air conditioner is ON (A/C relay is ON), refrigerant-pressure sensor converts refrigeration-pressure on the high pressure side into the voltage value, which is output to ECM which protects refrigeration cycle and control idle speed by the output voltage data, and additional air is supplied to the engine. If the appropriate engine speed is not reached, the IACV-AAC valve supplies the additional air required to increase the engine rpm.


Introduction

AIR CONDITIONER LAN SYSTEM OVERVIEW CONTROL SYSTEM

NFHA0167

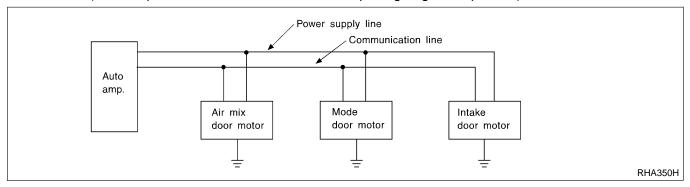
NFHA0167S01

The LAN system consists of auto amp., air mix door motor, intake door motor and mode door motor. A configuration of these components is shown in the diagram below.

Features

i Catai

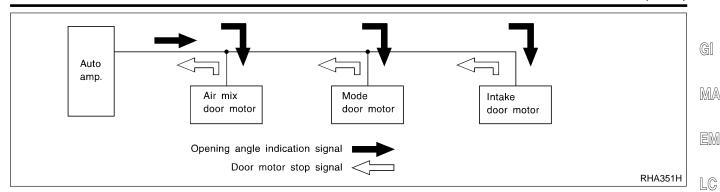
NFHA0168


SYSTEM CONSTRUCTION (LAN)

A small network is constructed between the auto amplifier, air mix door motor, mode door motor and intake door motor. The auto amplifier and motors are connected by data transmission lines and motor power supply lines. The LAN network is built through the ground circuits of the three motors.

Addresses, motor opening angle signals, motor stop signals and error checking messages are all transmitted through the data transmission lines connecting the auto amplifier and three motors.

The following functions are contained in LCUs built into the air mix door motor, intake door motor and the mode door motor.


- Address
- Motor opening angle signals
- Data transmission
- Motor stop and drive decision
- Opening angle sensor (PBR function)
- Comparison
- Decision (Auto amplifier indicated value and motor opening angle comparison)

Operation

NEUA01689010

The auto amplifier receives data from each of the sensors. The amplifier sends air mix door, intake door and mode door opening angle data to the air mix door motor LCU, mode door LCU and intake door motor LCU. The air mix door motor, intake door motor and mode door motor read their respective signals according to the address signal. Opening angle indication signals received from the auto amplifier and each of the motor position sensors are compared by the LCUs in each motor with the existing decision and opening angles. Subsequently, HOT/COLD, FRESH/RECIRCULATION or DEFROST/VENT operation is selected. The new selection data is returned to the auto amplifier.

Transmission Data and Transmission Order

FE

GL

MT

AT

AX

BT

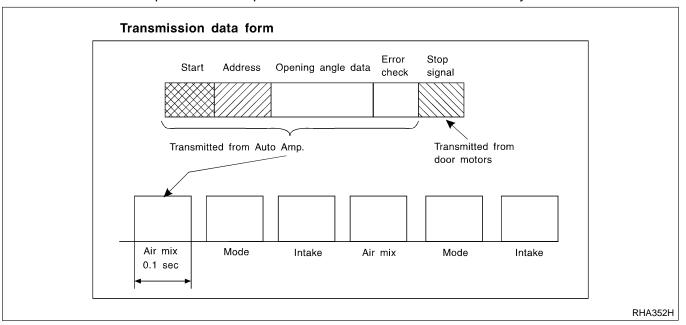
SC

EL

Amplifier data is transmitted consecutively to each of the door motors following the form shown in figure below. Start: Initial compulsory signal sent to each of the door motors.

Address: Data sent from the auto amplifier is selected according to data-based decisions made by the air mix door motor, intake door motor and mode door motor.

If the addresses are identical, the opening angle data and error check signals are received by the door motor LCUs. The LCUs then make the appropriate error decision. If the opening angle data is normal, door control begins.


If an error exists, the received data is rejected and corrected data received. Finally, door control is based upon the corrected opening angle data.

Opening angle: Data that shows the indicated door opening angle of each door motor.

Error check: Procedure by which sent and received data is checked for errors. Error data is then compiled. The error check prevents corrupted data from being used by the air mix door motor, intake door motor and mode door motor. Error data can be related to the following problems.

- Abnormal electrical frequency
- Poor electrical connections
- Signal leakage from transmission lines
- Signal level fluctuation

Stop signal: At the end of each transmission, a stop operation, in-operation, or internal problem message is delivered to the auto amplifier. This completes one data transmission and control cycle.

Air Mix Door Control (Automatic Temperature Control)

The air mix door is automatically controlled so that in-vehicle temperature is maintained at a predetermined value by: The temperature setting, ambient temperature, in-vehicle temperature and amount of sunload.

Fan Speed Control

Blower speed is automatically controlled based on temperature setting, ambient temperature, in-vehicle temperature, intake temperature, amount of sunload and air mix door position.

With FAN switch set to "AUTO", the blower motor starts to gradually increase air flow volume.

When engine coolant temperature is low, the blower motor operation is delayed to prevent cool air from flowing.

Intake Door Control

NFHA0168S010

The intake doors are automatically controlled based on temperature setting, ambient temperature, in-vehicle temperature, intake temperature, amount of sunload, air mix door position and ON-OFF operation of the compressor.

Outlet Door Control

NFHA0168S0106

The outlet door is automatically controlled by: The temperature setting, ambient temperature, in-vehicle temperature, intake temperature and amount of sunload.

Magnet Clutch Control

NFHA0168S0107

The ECM controls compressor operation using input signals from the throttle position sensor, refrigerant pressure sensor and auto amplifier.

Self-diagnostic System

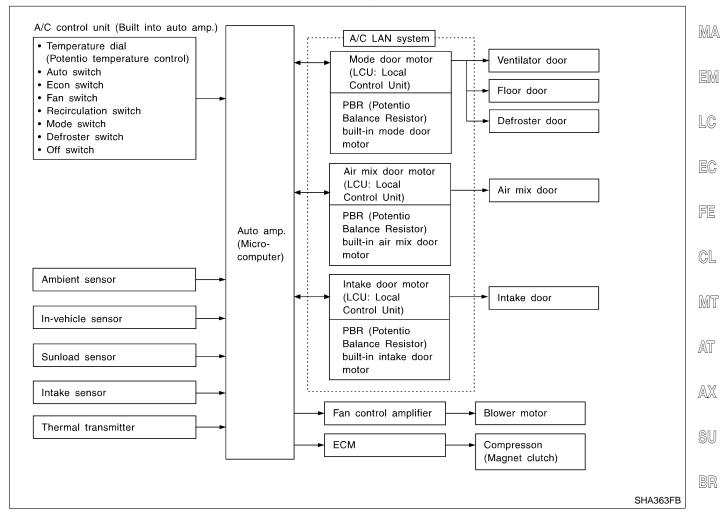
NFHA0168S0108

The self-diagnostic system is built into the auto amplifier (LCU) to quickly locate the cause of problems.

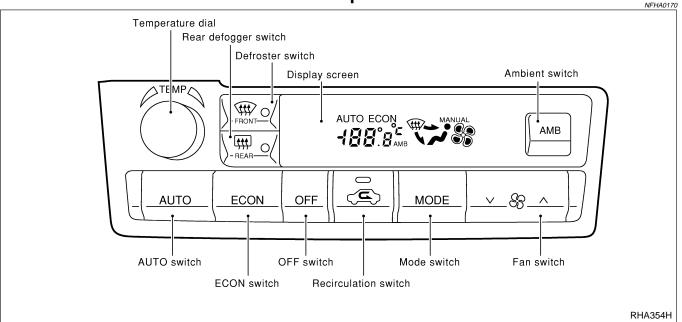
Overview of Control System

HA0169

GI


ST

BT


HA

SC

The control system consists of input sensors, switches, the automatic amplifier (microcomputer) and outputs. The relationship of these components is shown in the diagram below:

Control Operation

DISPLAY SCREEN

Displays the operational status of the system.

NFHA0170S01

AUTO SWITCH

NFHA0170S02

The compressor, intake doors, air mix door, outlet doors, and blower speed are automatically controlled so that the in-vehicle temperature will reach, and be maintained at the set temperature selected by the operator.

ECON SWITCH

NFHA0170S0

By pressing the ECON switch, the display should indicate ECON and the compressor always turns OFF. With the compressor OFF, the system will not remove heat (cool) or de-humidify. The system will maintain the invehicle temperature at the set temperature when the set temperature is above the ambient (outside) temperature. The system will set the intake doors to the outside air position.

TEMPERATURE DIAL (POTENTIO TEMPERATURE CONTROL)

NFHA0170S04

Increases or decreases the set temperature.

OFF SWITCH

The compressor and blower are OFF, the intake doors are set to the outside air position, and the air outlet doors are set to the foot (80% foot and 20% defrost) position.

FAN SWITCH

Manual control of the blower speed. Four speeds are available for manual control (as shown on the display screen):

low &, medium low &, medium high &, high &

RECIRCULATION (REC) SWITCH

NFHA0170S07

OFF position: Outside air is drawn into the passenger compartment.

ON position: Interior air is recirculated inside the vehicle.

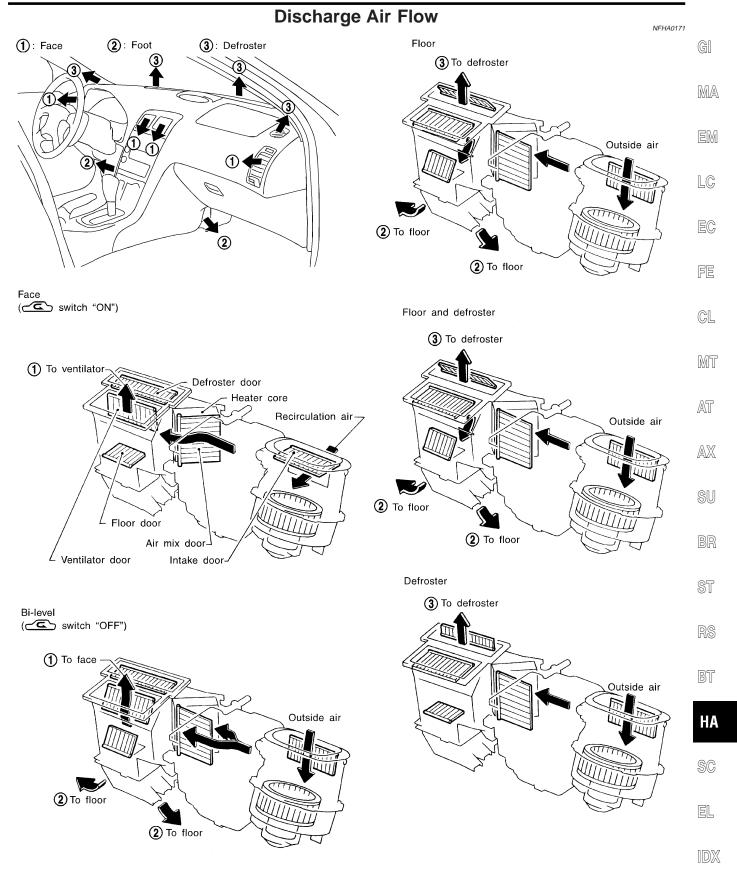
DEFROSTER (DEF) SWITCH

NEHA0170S08

Positions the air outlet doors to the defrost position. Also positions the intake doors to the outside air position.

MODE SWITCHES

NFHA0170S09

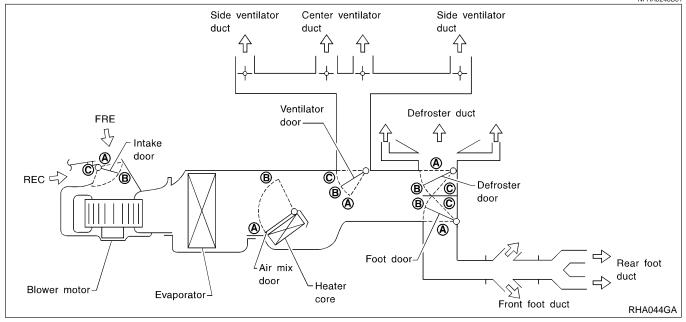

Control the air discharge outlets.

REAR WINDOW DEFOGGER SWITCH

NFHA0170S10

When illumination is ON, rear window is defogged.

DESCRIPTION

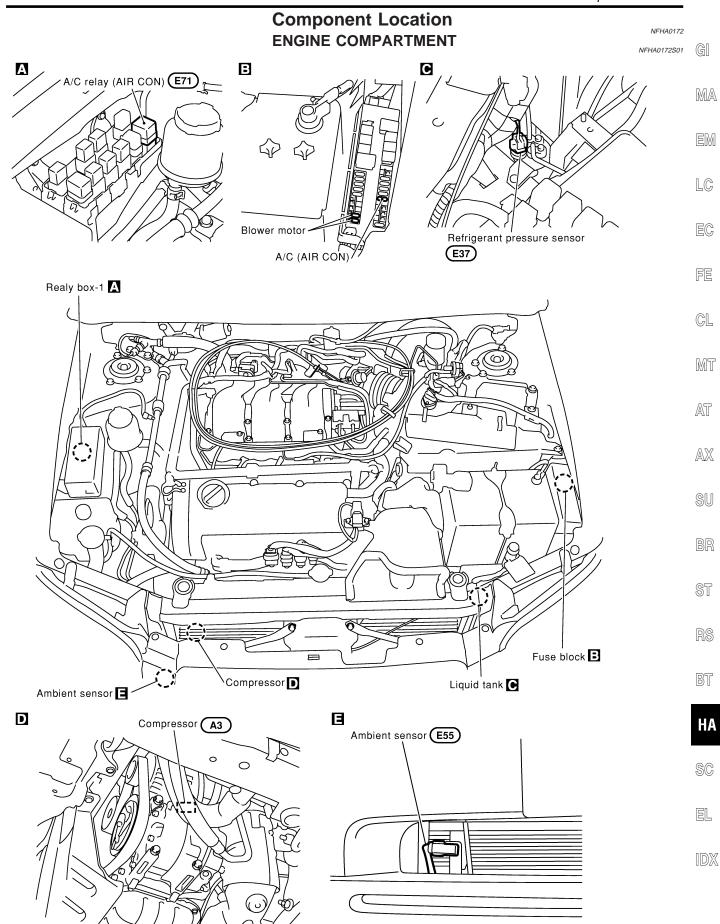


System Description

SWITCHES AND THEIR CONTROL FUNCTIONS

NFHA0246

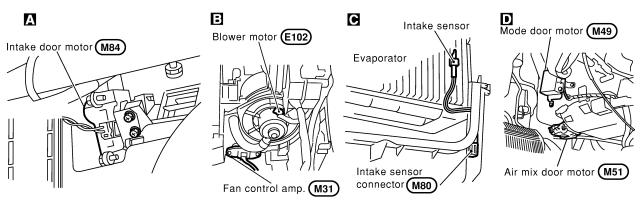
NFHA0246S01

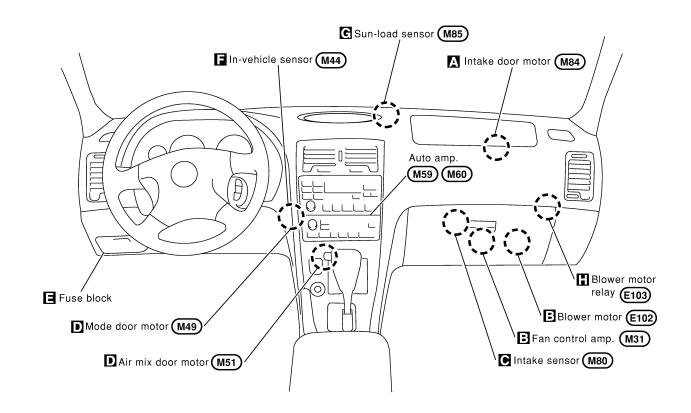


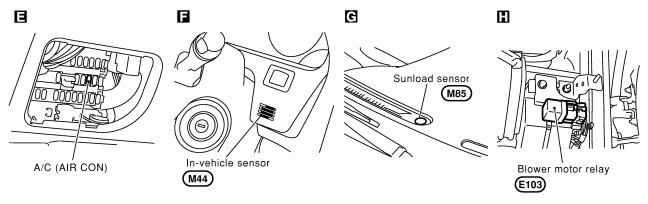
Position or		MOD	E SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		Front DEF SW		AUTO	ECON	REC	SW	Tem	Temperature DIAL	
switch	VENT	B/L	FOOT	D/F	ON	OFF	SW	SW	ON	OFF	4TEMPS																																																		
	٠,	:	ڼ	(9	*		*			₩	₩		**		₩		₩		₩		*		*								1																				AUTO	ECON	ک	₹)	TEMP		\				
Door				•	→	->						>								->		18.0°C (65°F)	_	32.0°C (85°F)																																					
Ventilator door	А	В	С	С	С		_			_																																																			
Foot door	Α	В	С	С	Α																																																								
Defroster door	А	Α	В	С	С	_ AUTO AUTO _		_			_																																																		
Air mix door		_	_		_					_	_	А	AUTO	В																																															
Intake door		_	_		С				A AUTO*1 —																																																				

^{*1:} Automatically controlled when REC switch is OFF.

TROUBLE DIAGNOSES

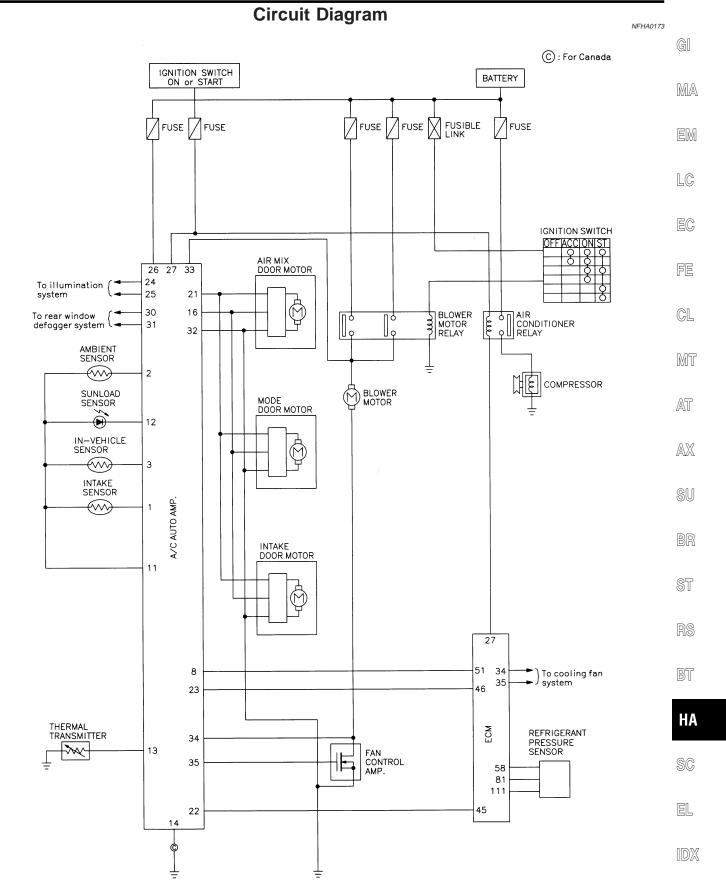

RHA453H



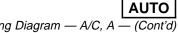


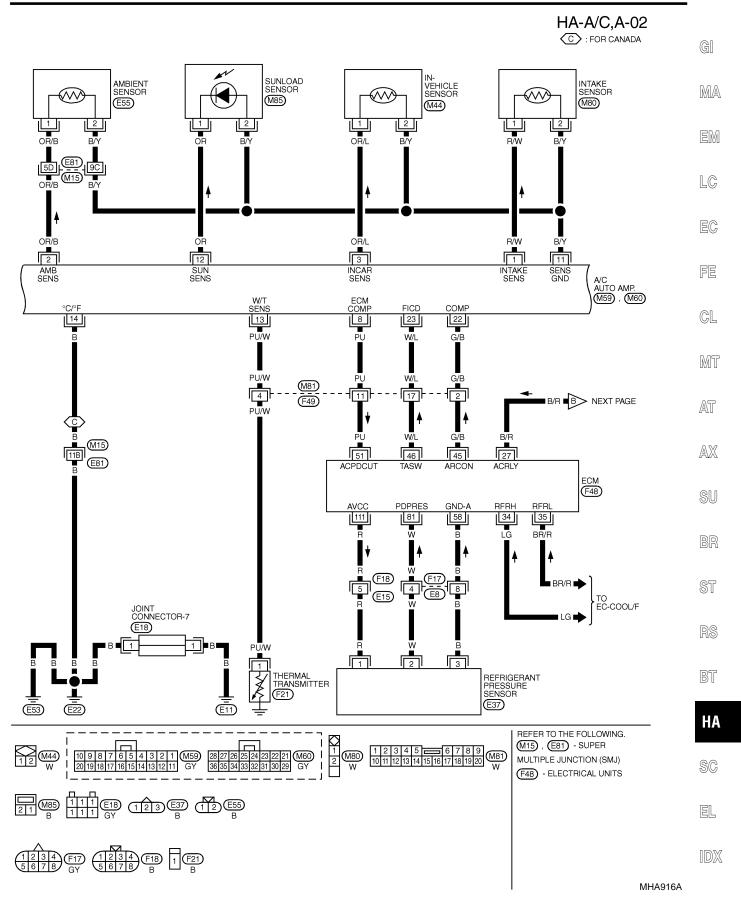
PASSENGER COMPARTMENT

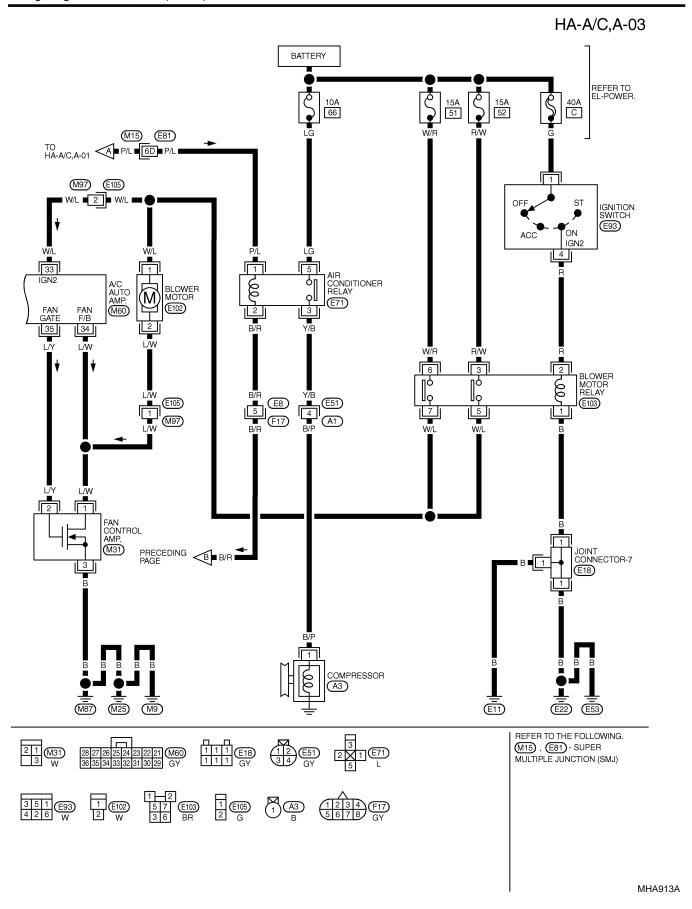
NFHA0172S02



RHA454H

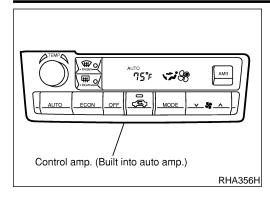



MHA910A



MHA952A

Wiring Diagram — A/C, A — NFHA0174 HA-A/C,A-01 IGNITION SWITCH ON OR START BATTERY : DATA LINE REFER TO EL-POWER. FUSE BLOCK (J/B) (M17), (M19) 10A 19 10A 12 9L P/L 10K ■ P/L ■A> TO HA-A/C,A-03 TO EL-DEF TO EL-ILL R/W 24 G/R 31 27 26 30 A/C AUTO AMP. (M59) , (M60) VACTR 21 LW 16 L/B 32 L/B AIR MIX DOOR MOTOR M51 INTAKE DOOR MOTOR (M84) MODE DOOR MOTOR (M49) $\overline{(M)}$ (M) $|\widehat{\mathsf{(M)}}|$ M25 <u>M</u>9 REFER TO THE FOLLOWING. $\begin{bmatrix} 1 \\ 2 \\ W \end{bmatrix} , \underbrace{M51}_{W}, \underbrace{M84}_{W}$ M17 , M19 - FUSE BLOCK -JUNCTION BOX (J/B)

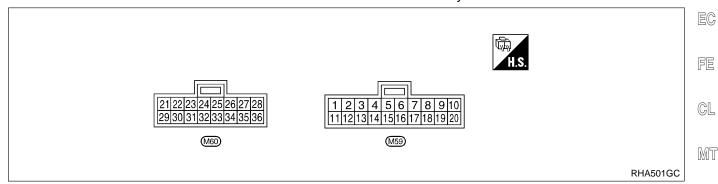


TROUBLE DIAGNOSES

AUTO

Auto Amp. Terminals and Reference Value

Auto Amp. Terminals and Reference Value INSPECTION OF AUTO AMP.


 Measure voltage between each terminal and body ground by following "AUTO AMP. INSPECTION TABLE".

75S01 G

MA

LC

Pin connector terminal layout

AUTO AMP. INSPECTION TABLE

NFHA0175S02

AT

AX

SU

BR

ST

RS

BT

HA

SC

EL

TERMINAL NO.	ITEM		COND	Voltage V	
1	Intake sensor	_			_
2	Ambient sensor		_	_	
3	In-vehicle sensor	_			_
8	ECM COMP	Con	Compressor ON Compressor OFF		Approximately 0 Approximately 4.6
11	Sensor ground		_		Approximately 0
12	Sunload sensor	_			_
13	Thermal transmitter		Engine coolant temperature	Approximately 40°C (104°F)	Approximately 10.8
				Approximately 55°C (131°F)	Approximately 9.9
				Approximately 60°C (140°F)	Approximately 9.5
14	Ground (for Canada)	(CON)	-		Approximately 0
16	A/C LAN signal		-		_
21	Power supply for mode door motor, intake door motor and air mix door motor		_		*1
22	Compressor ON signal		Compressor	ON	Approximately 0
				OFF	Approximately 4.6
26	Power supply for BAT	COFF		BATTERY VOLTAGE	

AUTO

Auto Amp. Terminals and Reference Value (Cont'd)

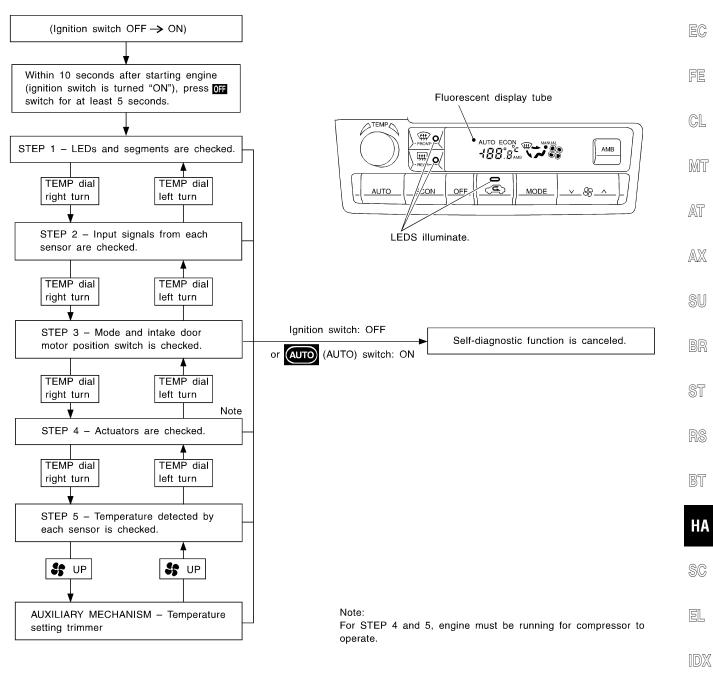
TERMINAL NO.	ITEM		COND	Voltage V	
27	Power supply for IGN		_		Approximately 12
30	Rear window defogger feed back	CON	Rear window defogger switch	ON	Approximately 12
				OFF	Approximately 0
31	Rear window defogger ON sig- nal		Rear window defogger switch	ON	Approximately 0
				OFF	Approximately 12
32	Ground		_		Approximately 0
33	Power source for A/C		Ignition voltage feed back		Approximately 12
34	Blower motor feed back		Fan speed: Low		Approximately 7 - 10
35	Fan control AMP. control signal		Fan speed	Low, Middle low or Middle high	Approximately 2.5 - 3.0
				High	Approximately 9 - 10

^{*1:} When the motor is working, approx. 0V will be indicated. When the motor stops, approx. 12V will exist.

Self-diagnosis

INTRODUCTION AND GENERAL DESCRIPTION

=NFHA0176


MA

EM

LC

The self-diagnostic system diagnoses sensors, door motors, blower motor, etc. by system line. Refer to applicable sections (items) for details. Shifting from normal control to the self-diagnostic system is accomplished by starting the engine (turning the ignition switch from "OFF" to "ON") and pressing " switch for at least 5 seconds. The " switch must be pressed within 5 seconds after starting the engine (ignition switch is turned "ON"). This system will be canceled by either pressing (AUTO) switch or turning the ignition switch "OFF". Shifting from one step to another is accomplished by means of pushing TEMP dial right turn or TEMP dial left turn switch, as required.

Additionally shifting from STEP 5 to AUXILIARY MECHANISM is accomplished by means of pushing % (fan) UP switch.

RHA357H

Perform all of the following tests to narrow the problem to a specific assembly, actuator, or function. Link to the Diagnostic Procedure which corresponds to malfunctions noted in these tests. If the A/C display screen has no display, check all power supply circuits to the A/C Auto Amp.

FUNCTION CONFIRMATION PROCEDURE

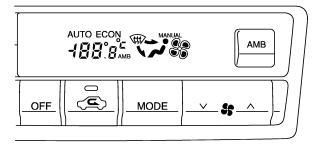
NFHA0176S02

1 ENTER SELF-DIAGNOSTIC MODE

Perform steps 1 - 3

- 1. Turn the ignition OFF.
- 2. Start the engine.
- 3. Immediately after starting the engine press and hold the OFF switch (for the auto A/C system) for at least 5 seconds. The A/C Auto Amp. should now be in Self Diagnosis mode. Self Diagnosis steps 1 5 can now be performed. Self Diagnosis step 1 will be displayed first. Shifting from one step to another is accomplished by pressing the temperature increase or decrease switch.

▶ GO TO 2.


2 STEP 1 LED/DISPLAY CHECK

Verify all segments illuminate.

If all segments do not illuminate the fluorescent display tube is malfunctioning or the system has not entered self diagnosis which would indicate a malfunctioning OFF switch.

Do all LEDs and segments illuminate?

Display malfunction

RHA358H

Yes or No

Yes	>	GO TO 3.
No	>	Malfunctioning off switch, LED or fluorescent display tube. Replace A/C auto amp.

3 CHECK TO ADVANCE SELF-DIAGNOSIS STEP 2

- 1. Turn the TEMP dial clockwise.
- 2. Advance to self-diagnosis STEP 2.

If the system does not shift between step 1 and 2, a malfunctioning TEMP dial is indicated.

Yes or No

Yes	GO TO 4.
	Malfunctioning TEMP dial. Replace A/C auto amp.

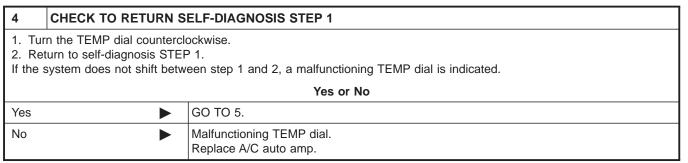
GI

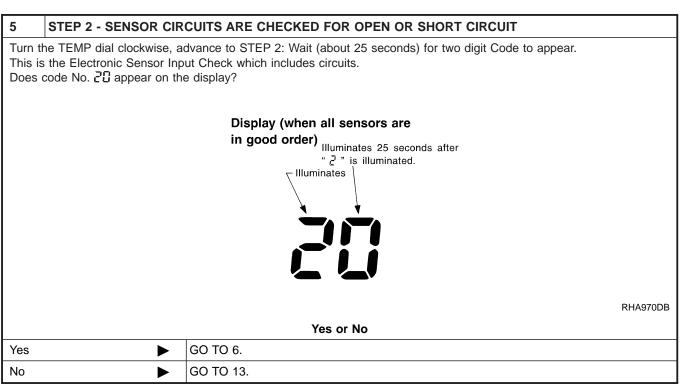
MA

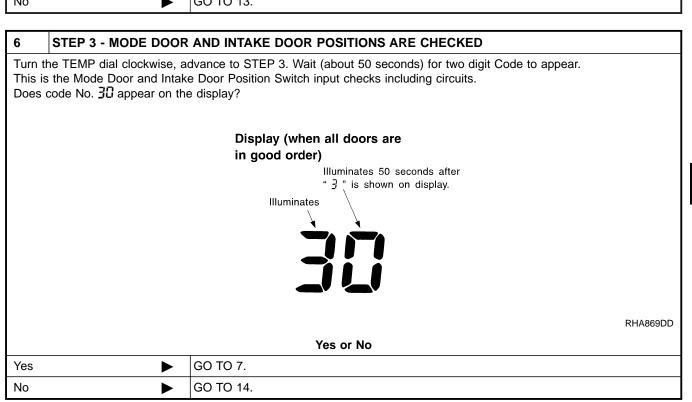
EM

LC

FE


MT


AT


AX

BT

SC

7 STEP 4 - OPERATION OF EACH ACTUATOR IS CHECKED

Turn the TEMP dial clockwise, advance to STEP 4. Engine running.

This is Heater and A/C system check. Code 41 will be displayed. Use the DEF switch to advance the code number from 41 to 46. After 46, the display will return to code 41 and can be advanced to 46 again.

RHA495A

GO TO 8.

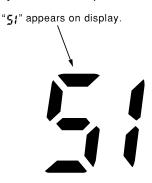
8	CHECK ACTUATORS]	
Check	n operation of system con s must be made visually per operation.							outlet	s with your hand, etc. for		
		Code No.	41	42	43	44	45	46			
		Mode door	VENT	B/L	B/L	FOOT	D/F	DEF		l	
		Intake door	REC	REC	20% FRE	FRE	FRE	FRE		l	
		Air mix door	Full Cold	Full Cold	Full Hot	Full Hot	Full Hot	Full Hot		l	
		Blower motor	4 - 5 V	9 - 11 V	7 - 9 V	7 - 9 V	7 - 9 V	10 - 12 V		l	
		Compressor	ON	ON	OFF	OFF	ON	ON		l	
3	tion condition of any	-44.m c (!	ناميد	alse -l !	!		_		MTBL0314		
pera	ting condition of each a	ctuator cannot b Discharge air f		скеа і	by ind	icators	5.				
		— Discharge all 1			Air outl	et/distrib	ution			l	
		Mode switch	Mode switch	switch Fa			Foot		froster		l
		~;		100%		_		_		l	
		**		60%		40%		_		l	
				_		80%		20%		l	
		**		_		60%		40%		l	
		- W		_		_	1	00%		l	
			•		•		•		MTBL0128	l	
				ОК о	r NG						
OK	>	GO TO 9.									
NG	•	Go to "Mode	Air outlet does not change. Go to "Mode Door Motor" (HA-54). Intake door does not change.								
		Go to "Intake Blower motor	Door opera	Motor" ation is	(HA-6		ng.				
		Go to "Blowe Magnet clutch Go to "Magnet	n does et Clut	not er ch" (H/	ngage. 4-76).						
		 Discharge air Go to "Air Mix 					ange.				

ЦΛ

SC

EL

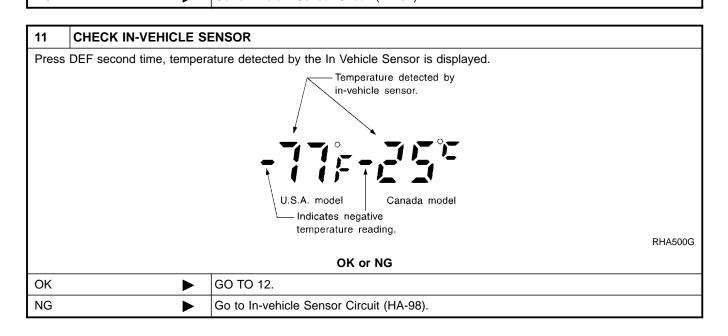
IDX



STEP 5 - TEMPERATURE OF EACH SENSOR IS CHECKED

Turn the TEMP dial clockwise, advance to STEP 5. This is Intake sensor, In Vehicle sensor and Ambient Sensor function check. Code 51 will be displayed.

NOTE:


Each sensor reading should be approximately the actual temperature.

RHA359H

GO TO 10.

Press DEF once, temperature detected by the Ambient Sensor is displayed. Temperature detected by ambient sensor. U.S.A. model Canada model Indicates negative temperature reading. OK or NG OK GO TO 11. NG Go to Ambient Sensor Circuit (HA-94).

MT

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

НА

SC

EL

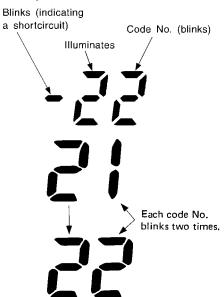
12	CHECK INTAKE SENSOR	
Press	DEF third time, temperature detected by the Intake Sensor is displayed.	1 (
	Temperature detected by in-vehicle sensor.	
		Į.
	U.S.A. model Canada model Indicates negative	
	temperature reading. RHA500G	
	OK or NG	
OK	 Press (DEF) switch the fourth time. Display returns to original presentation 51. Turn ignition switch OFF or (AUTO) switch ON. END 	
NG	Go to Intake Sensor Circuit (HA-105).	1 (

13 CHECK MALFUNCTIONING SENSOR

NOTE:

- A blinking mark (-) preceding the Code No. indicates a short circuit.
- If 2 or more items are malfunctioning the corresponding codes will alternately blink twice.
- A circuit will be detected as open or shorted and its code No. will be displayed when input signals correspond with conditions in the following chart.

Code No.	Sensor	Open circuit	Short circuit	Reference page
21	Ambient	Less than	Greater than	*3
-21	sensor	-41.7°C (-43°F)	100°C (212°F)	J
22	In-vehicle sensor	Less than	Greater than	*4
- 22		-41.7°C (-43°F)	100°C (212°F)	
24	Intake sensor	Less than	Greater than	*5
- 24		-43.8°C (-47°F)	100°C (212°F)	3
25	Sunload	Less than	Greater than	*6
- 25	sensor*2	0.228 mA	0.98 mA	O
26	PBR*1	Greater than	Less than 5%	*7
- 26		95%	LCGG triair 5 /6	,

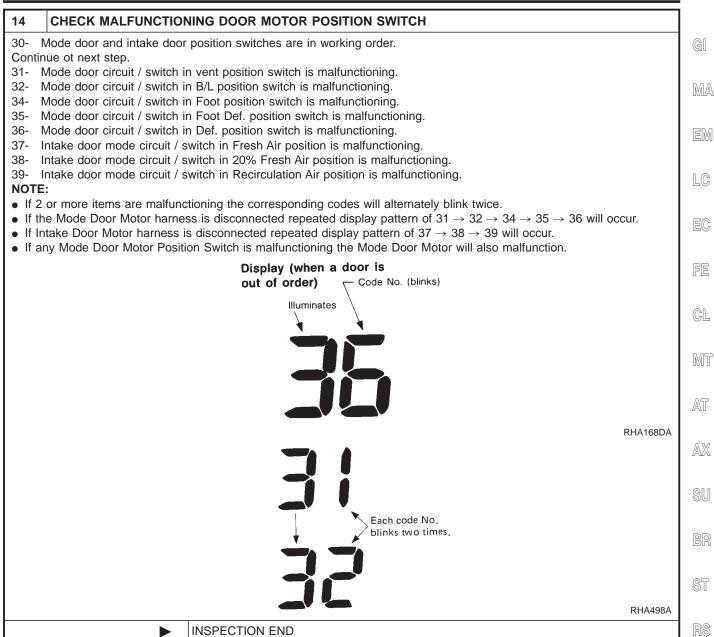

MTBL0454

- *1: "95%" and "5%" refer to percentage with respect to stroke of air mix door. (Full cold: 0%, Full hot: 100%)
- *2: Conduct self-diagnosis STEP 2 under sunshine.

When conducting indoors, direct light (more than 60W) at sunload sensor.

*3: HA-94, *4: HA-98, *5: HA-105, *6: HA-101, *7: HA-107

Display (when sensor malfunctions)



RHA455G

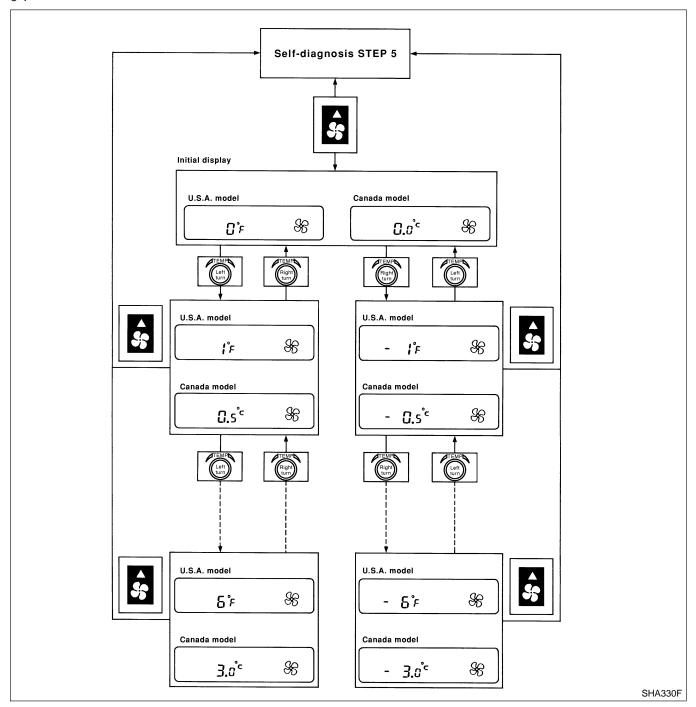
RHA501A

INSPECTION END

НА

SC

AUXILIARY MECHANISM: TEMPERATURE SETTING TRIMMER Unconfirmed Incidents


=NFHA0176S03

EUA017690301

The customer may feel that the cabin temperature is not being controlled or regulated to the temperature indicated by the auto A/C display screen. To satisfy individual driver preference the Temperature Setting Trimmer may be used to compensate in a range of $\pm 3^{\circ}$ C ($\pm 6^{\circ}$ F).

- 1. Enter Self Diagnosis mode and select STEP 5.
- 2. Press the Fan Up % switch: This will set the A/C system in auxiliary mode and the display will show 61.
- 3. Turn the temperature dial clockwise or counterclockwise: The temperature will change at a rate of 0.5°C (1°F).

If power is lost to the A/C Auto Amp. trimmer setting is canceled and setting becomes that of initial condition, 0°.

When battery cable is disconnected, trimmer operation is canceled. Temperature set becomes that of initial condition, i.e. 0°C (0°F).

NFHA0177S01

FE

CL

MT

AT

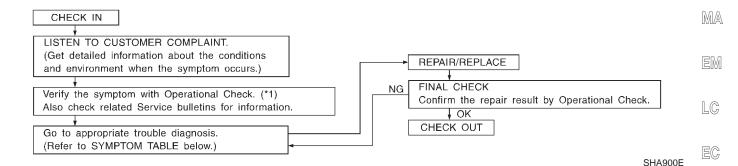
AX

SU

ST

BT

HA


SC

How to Perform Trouble Diagnoses for Quick and Accurate Repair

How to Perform Trouble Diagnoses for Quick and Accurate Penair

and Accurate Repair

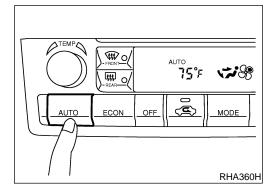
WORK FLOW

*1: Operational Check (HA-48)

SYMPTOM TABLE

	NFHA0177S02				
Symptom	Reference Page				
A/C system does not come on.	Go to Trouble Diagnosis Procedure for A/C system.	HA-51			
Air outlet does not change.					
Mode door motor does not operate nor- mally.	Go to Trouble Diagnosis Procedure for Mode Door Motor. (LAN)	HA-54			
Discharge air temperature does not change.	Co to Trouble Diagnosis Presedure for Air Miy Door Meter (LAN)	HA-61			
Air mix door motor does not operate nor- mally.	Go to Trouble Diagnosis Procedure for Air Mix Door Motor. (LAN)	HA-01			
Intake door does not change.					
Intake door motor does not operate normally.	Go to Trouble Diagnosis Procedure for Intake Door Motor. (LAN)	HA-64			
Blower motor operation is malfunctioning.					
Blower motor operation is malfunctioning under out of starting fan speed control.	Go to Trouble Diagnosis Procedure for Blower Motor.	HA-67			
Magnet clutch does not engage.	Go to Trouble Diagnosis Procedure for Magnet Clutch.	HA-76			
Insufficient cooling.	Go to Trouble Diagnosis Procedure for Insufficient Cooling.	HA-82			
Insufficient heating.	Go to Trouble Diagnosis Procedure for Insufficient Heating.	HA-90			
Noise.	Go to Trouble Diagnosis Procedure for Noise.	HA-91			
Self-diagnosis can not be performed.	Go to Trouble Diagnosis Procedure for Self-diagnosis.	HA-92			
Memory function does not operate.	Go to Trouble Diagnosis Procedure for Memory Function.	HA-93			
ECON mode does not operate.	Go to Trouble Diagnosis Procedure for ECON (ECONOMY) — mode.	HA-94			

Operational Check


VFHA017

The purpose of the operational check is to confirm that the system operates properly.

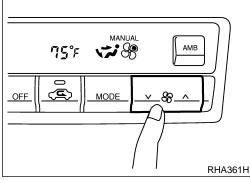
CONDITIONS:

NFHA0178S01

Engine running and at normal operating temperature.

PROCEDURE:

NFHA0178S02


NFHA0178S0201

Check Memory Function
 Set the temperature 75°F or 25°C.

- 2. Press OFF switch.
- 3. Turn the ignition off.
- 4. Turn the ignition on.
- 5. Press the AUTO switch.
- Confirm that the set temperature remains at previous temperature.
- 7. Press OFF switch.

If NG, go to trouble diagnosis procedure for memory function (HA-93).

If OK, continue with next check.

RHA361H T5°F MANUAL AMB OFF MODE WES MODE MODE

2. Check Blower

NFHA0178S0202

- Press fan switch (up side) one time.
 Blower should operate on low speed.
 The fan symbol should have one blade lit & ...
- Press fan switch (up side) one more time, and continue checking blower speed and fan symbol until all speeds are checked.
- Leave blower on MAX speed \$.

If NG, go to trouble diagnosis procedure for blower motor (HA-67). If OK, continue with next check.

3. Check Discharge Air

NFHA0178S0203

- 1. Press mode switch four times and DEF button.
- 2. Each position indicator should change shape.

RHA362H

Operational Check (Cont'd)

Mode	Air	outlet/dist	tribution
control knob	Face	Foot	Defroste
***	100%	_	_
(など	60%	40%	-
المر)	-	80%	20%
(11)	_	60%	40%
(#)	_	_	100%

Confirm that discharge air comes out according to the air distribution table at left. Refer to "Discharge Air Flow" (HA-27).

NOTE:

Confirm that the compressor clutch is engaged (visual inspection) and intake door position is at FRESH when the DEF is selected.

Intake door position is checked in the next step.

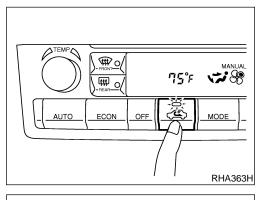
If NG, go to trouble diagnosis procedure for mode door motor

If OK, continue with next check.

GI

MA

LC


EC

FE

GL

MT

NFHA0178S0204

4. Check Recirculation

Press REC switch.

Recirculation indicator should illuminate.

Listen for intake door position change (you should hear blower sound change slightly).

If NG, go to trouble diagnosis procedure for intake door (HA-64). If OK, continue with next check.

SU

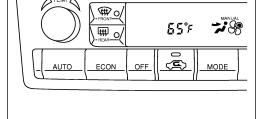
AX

ST

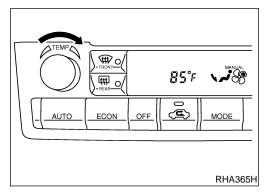
5. Check Temperature Decrease

Turn the temperature dial counterclockwise until 18°C (65°F) is displayed.

Check for cold air at discharge air outlets.


If NG, go to trouble diagnosis procedure for insufficient cooling (HA-82).

If OK, continue with next check.


HA

SC

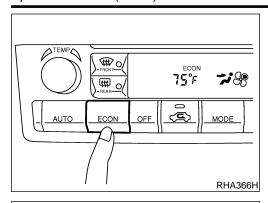
BT

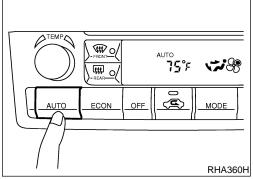
RHA364H

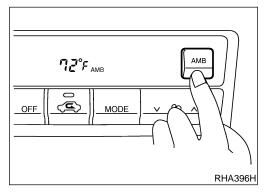
6. Check Temperature Increase

Turn the temperature dial clockwise until 32°C (85°F) is displayed.

2. Check for hot air at discharge air outlets.


If NG, go to trouble diagnosis procedure for insufficient heating (HA-90).


If OK, continue with next check.


EL

NFHA0178S0207

7. Check ECON (Economy) Mode

1. Set the temperature 75°F or 25°C.

2. Press ECON switch.

Display should indicate ECON (no AUTO).

Confirm that the compressor clutch is not engaged (visual inspection).

(Discharge air and blower speed will depend on ambient, invehicle and set temperatures.)

If NG, go to trouble diagnosis procedure for ECON (Economy) mode (HA-94).

If OK, continue with next check.

8. Check AUTO Mode

NFHA0178S0208

1. Press AUTO switch.

2. Display should indicate AUTO (no ECON).

Confirm that the compressor clutch engages (audio or visual inspection).

(Discharge air and blower speed will depend on ambient, invehicle and set temperatures.)

If NG, go to trouble diagnosis procedure for A/C system (HA-51), then if necessary, trouble diagnosis procedure for magnet clutch (HA-76).

If OK, continue with next check.

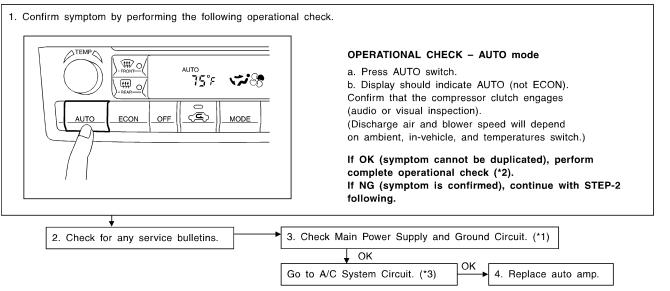
9. Check Ambient Display

NFHA0178S0209

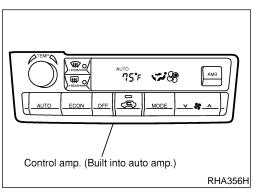
1. Press AMB switch.

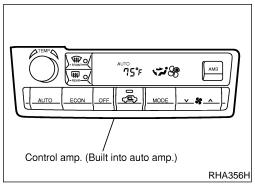
2. Display should show the outside (ambient) temperature for approximately 5 seconds.

If all operational check are OK (symptom can not be duplicated), go to "Incident Simulation Tests" (GI-26) and perform tests as outlined to simulate driving conditions environment. If symptom appears, refer to "Symptom Table" (HA-47) and perform applicable trouble diagnosis procedures.


A/C System

TROUBLE DIAGNOSIS PROCEDURE FOR A/C SYSTEM SYMPTOM:


MPTOM:
A/C system does not come on.


INSPECTION FLOW

*1: HA-52

*2: HA-48

COMPONENT DESCRIPTION Automatic Amplifier (Auto Amp.)

The auto amplifier has a built-in microcomputer which processes information sent from various sensors needed for air conditioner operation. The air mix door motor, mode door motor, intake door motor, blower motor and compressor are then controlled.

*3: HA-52

The auto amplifier is unitized with control mechanisms. Signals from various switches and Potentio Temperature Control (PTC) are directly entered into auto amplifier.

Self-diagnostic functions are also built into auto amplifier to provide quick check of malfunctions in the auto air conditioner system.

Potentio Temperature Control (PTC)

The PTC is built into the A/C auto amp. It can be set at an interval of 0.5°C (1.0°F) in the 18°C (65°F) to 32°C (85°F) temperature range by pushing the temperature button. The set temperature is digitally displayed.

MA

=NFHA0179

I @

LG

EC

FE

GL

MT

RHA367H

ST

RS

B [

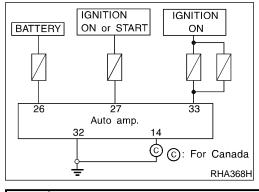
НА

SC

96

EL

 $\mathbb{D}\mathbb{X}$

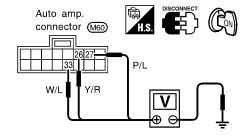


MAIN POWER SUPPLY AND GROUND CIRCUIT CHECK -NFHA0180

Power Supply Circuit Check

Check power supply circuit for air conditioner system. Refer to EL-10, "Wiring Diagram — POWER —".

NFHA0180S03


DIAGNOSTIC PROCEDURE SYMPTOM:

A/C system does not come on.

NFHA0181

1 CHECK POWER SUPPLY CIRCUIT FOR AUTO AMP.

Measure voltage across terminal Nos. 26, 27, 33 and body ground.

Votmeter	Voltage		
(+)	(-)	voltage	
26	Body ground		
27		Approx. 12V	
33			

SHA319F

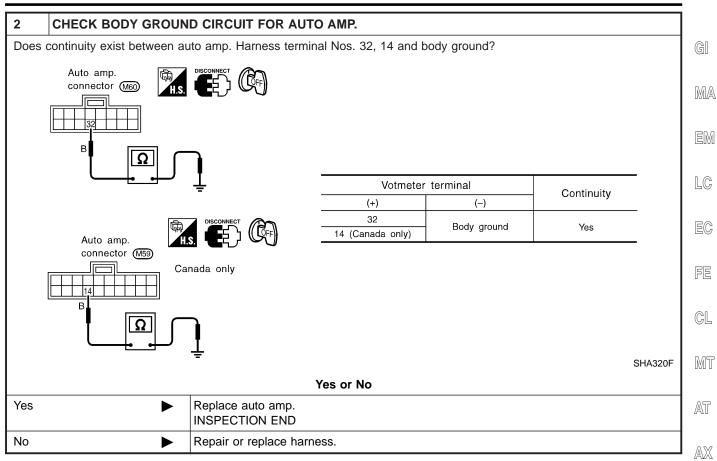
OK or NG

ОК	>	GO TO 2.
NG	•	 Check auto amp. ground circuit. Check 10A fuse (Nos. 12 and 19, located in the fuse block) and 15A fuses (Nos. 51 and 52, located in the fuse block). If fuses are OK, check for open circuit in wiring harness. Repair or replace as necessary. If fuses are NG, replace fuse and check wiring harness for short circuit. Repair or replace as necessary.

SU

BR

ST


RS

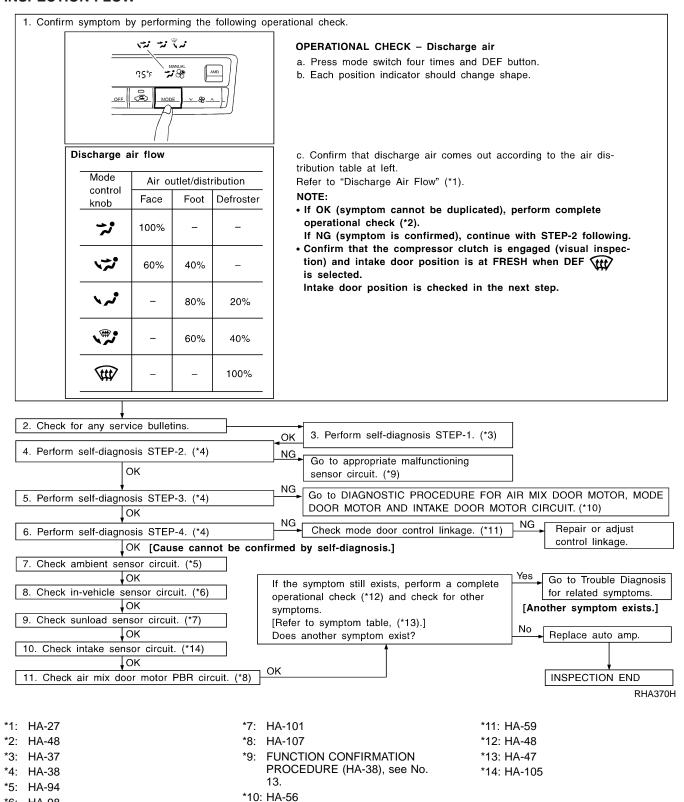
BT

HA

SC

EL

Mode Door Motor


TROUBLE DIAGNOSIS PROCEDURE FOR MODE DOOR MOTOR (LAN) SYMPTOM:

=NFHA0182

- Air outlet does not change.
- Mode door motor does not operate normally.

INSPECTION FLOW

*6: HA-98

SYSTEM DESCRIPTION

Component Parts

=NFHA0183

NFHA0183S01 (

Mode door control system components are:

- 1) Auto amp.
- 2) Mode door motor (LCU)
- 3) In-vehicle sensor
- 4) Ambient sensor
- 5) Sunload sensor
- 6) Intake sensor

System Operation

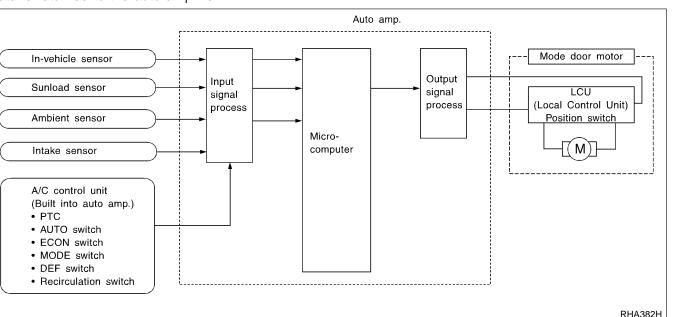
L© NFHA0183S02

The auto amplifier receives data from each of the sensors. The amplifier sends air mix door, mode door and intake door opening angle data to the air mix door motor LCU, mode door motor LCU and intake door motor LCU.

EC

GL

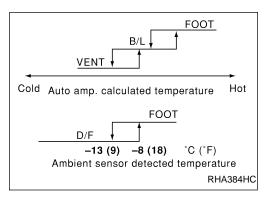
MT


AT

AX

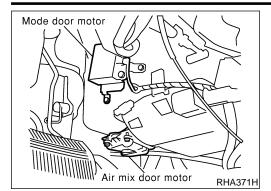
MA

EM


The air mix door motor, mode door motor and intake door motor read their respective signals according to the address signal. Opening angle indication signals received from the auto amplifier and each of the motor position sensors are compared by the LCUs in each motor with the existing decision and opening angles. Subsequently, HOT/COLD or OPEN/CLOSE or DEFROST/VENT operation is selected. The new selection data is returned to the auto amplifier.

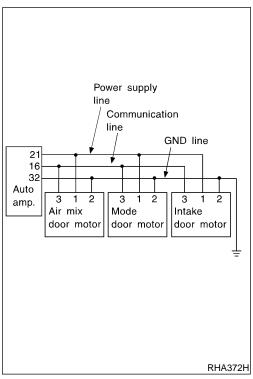
Mode Door Control Specification

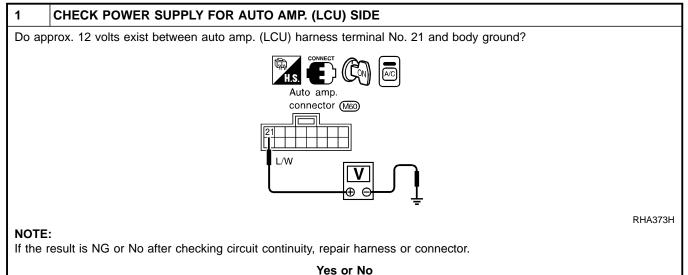
NFHA0183S03



HA

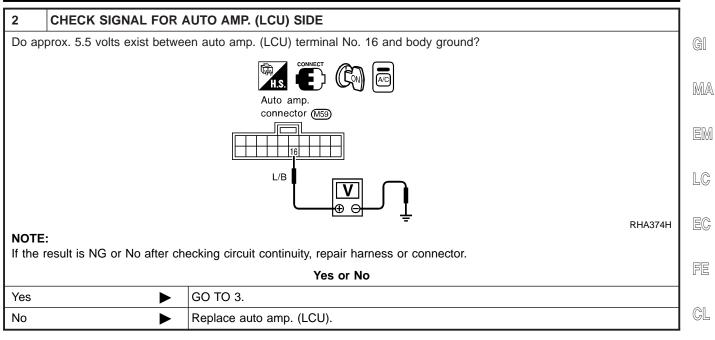
SC

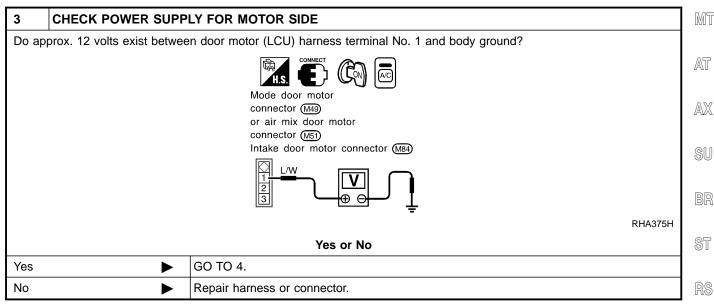

EL


COMPONENT DESCRIPTION

The mode door motor is attached to the heater unit. It rotates so that air is discharged from the outlet set by the auto amplifier. Motor rotation is conveyed to a link which activates the mode door.

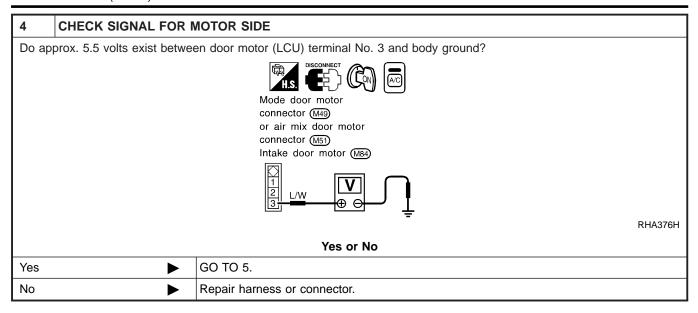
DIAGNOSTIC PROCEDURE FOR AIR MIX DOOR MOTOR, MODE DOOR MOTOR AND INTAKE DOOR MOTOR CIRCUIT

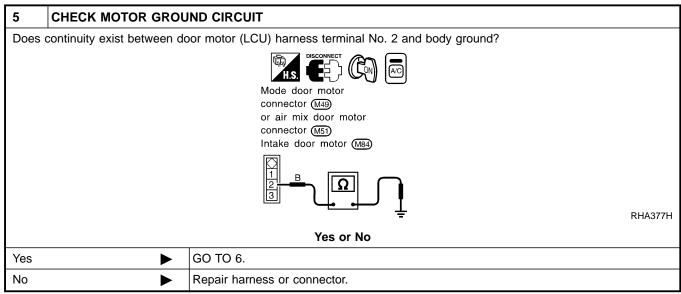

SYMPTOM: Air mix door motor, mode door motor and/or intake door motor does not operate normally.



GO TO 2.

Replace auto amp. (LCU).


Yes No



BT

SC

6	CHECK MOTOR	OPER	ATION						
Disco	Disconnect and reconnect the motor connector and confirm the motor operation.								
	OK or NG								
OK (F	Return to operate ally.)	•	Poor contacting the motor connector						
NG (Does not operate normally.)			GO TO 7.						

Mode Door Motor (Cont'd)

7 C	CHECK MODE DOOR MOTOR AND AIR MIX DOOR MOTOR OPERATION						
2. Recor	nnect the intake door nnect the mode door or operation.	motor connector. motor and air mix door motor connector and confirm the mode door motor and air mix door					
	OK or NG						
and air m	le door motor nix door motor normally.)	Replace the intake door motor.					
NG (Mode door motor and air mix door motor do not operate normally.)		GO TO 8.					
8 C	HECK AIR MIX DO	OR MOTOR AND INTAKE DOOR MOTOR OPERATION	7				
	nnect the mode door	motor connector. motor and confirm the air mix door motor and intake door motor operation.					
		OK or NG	ı				
and intak	mix door motor se door motor normally.)	Replace mode door motor.					
and intak	mix door motor se door motor perate normally.)	GO TO 9.					

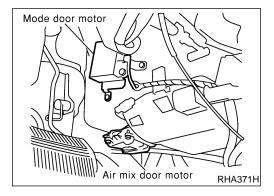
9	9 CHECK INTAKE DOOR MOTOR AND MODE DOOR MOTOR OPERATION						
	sconnect the air mix econnect the mode de		notor connector. otor and confirm the intake door motor and mode door motor operation.				
	OK or NG						
and m	ntake door motor node door motor te normally.)	•	Replace air mix door motor.				
and m	ntake door motor node door motor t operate normally.)	•	Replace auto amp.				

AT

AX

SU

BR


ST

BT

HA

SC

EL

CONTROL LINKAGE ADJUSTMENT

Mode Door

NFHA0186

- Install mode door motor on heater unit and connect it to main harness.
- 2. Set up code No. in Self-diagnosis STEP 4. Refer to HA-38.
- 3. Move side link by hand and hold mode door in DEF mode.
- 4. Attach mode door motor rod to side link rod holder.
- Make sure mode door operates properly when changing from code No. ዛ፥ to ዛይ by pushing DEF switch.

Mode Door Motor (Cont'd)

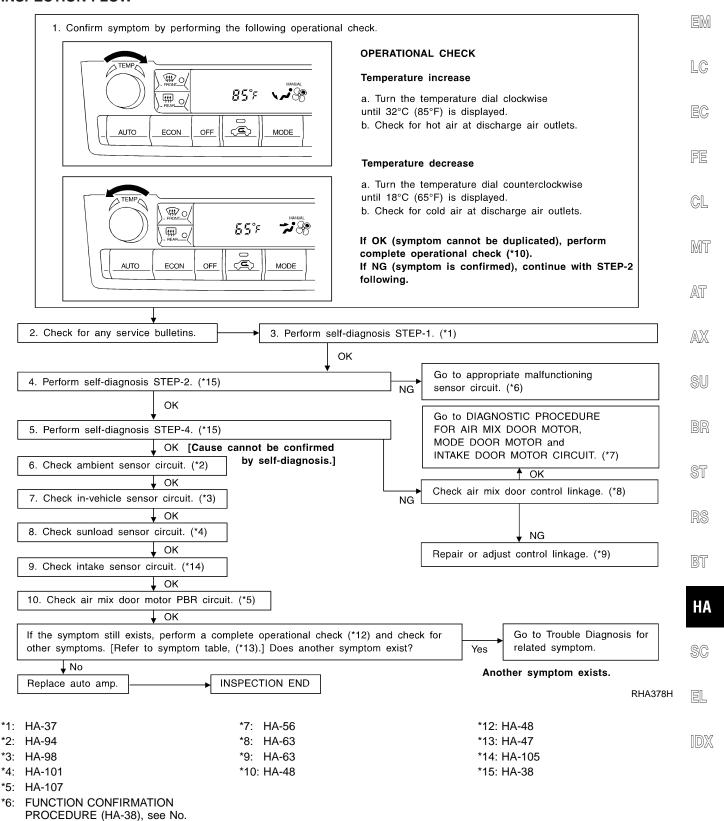
TROUBLE DIAGNOSES

AUTO

4!	45	43	44	45	45
VENT	B/L	B/L	FOOT	D/F	DEF

Air Mix Door Motor

TROUBLE DIAGNOSIS PROCEDURE FOR AIR MIX DOOR (LAN) SYMPTOM:


=NFHA0187

MA

- Discharge air temperature does not change.
- Air mix door motor does not operate.

INSPECTION FLOW

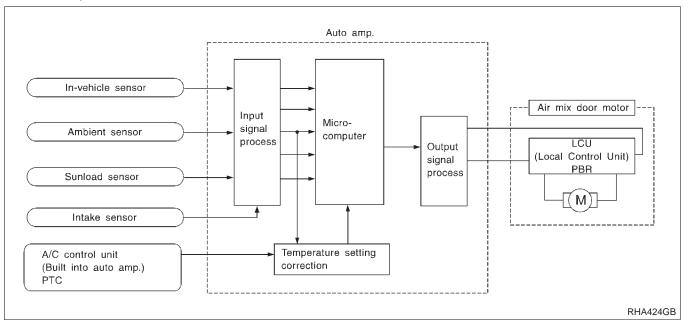
13.

SYSTEM DESCRIPTION

Component Parts

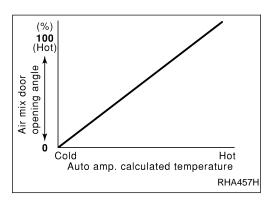
=NFHA0188

NFHA0188S01

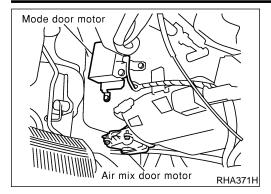

Air mix door control system components are:

- 1) Auto amp.
- 2) Air mix door motor (LCU)
- 3) In-vehicle sensor
- 4) Ambient sensor
- 5) Sunload sensor
- 6) Intake sensor

System Operation


NFHA0188S02

The auto amplifier receives data from each of the sensors. The amplifier sends air mix door, mode door, intake door opening angle data to the air mix door motor LCU, mode door motor LCU and intake door motor LCU. The air mix door motor, mode door motor and intake door motor read their respective signals according to the address signal. Opening angle indication signals received from the auto amplifier and each of the motor position sensors are compared by the LCUs in each motor with the existing decision and opening angles. Subsequently, HOT/COLD or DEFROST/VENT operation is selected. The new selection data is returned to the auto amplifier.



Air Mix Door Control Specification

NFHA0188S03

Air Mix Door Motor (Cont'd)

COMPONENT DESCRIPTION

The air mix door motor is attached to the heater unit. It rotates so that the air mix door is opened or closed to a position set by the auto amplifier. Motor rotation is then conveyed through a shaft and the air mix door position is then fed back to the auto amplifier by PBR built-in air mix door motor.

GI

MA

LC

DIAGNOSTIC PROCEDURE

SYMPTOM: Discharge air temperature does not change.

Refer to HA-56.

FE

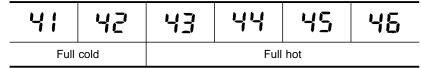
GL

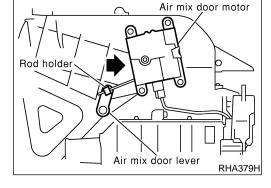
MT

CONTROL LINKAGE ADJUSTMENT

Air Mix Door

NFHA0190


AT


SU

BR

ST

- . Install air mix door motor on heater unit and connect it to main harness.
- 2. Set up code No. 41 in Self-diagnosis STEP 4. Refer to HA-37.
- Move air mix door lever by hand and hold it in full cold position.
- 4. Attach air mix door lever to rod holder.
- 5. Make sure air mix door operates properly when changing from code No. 41 to 45 by pushing DEF switch.

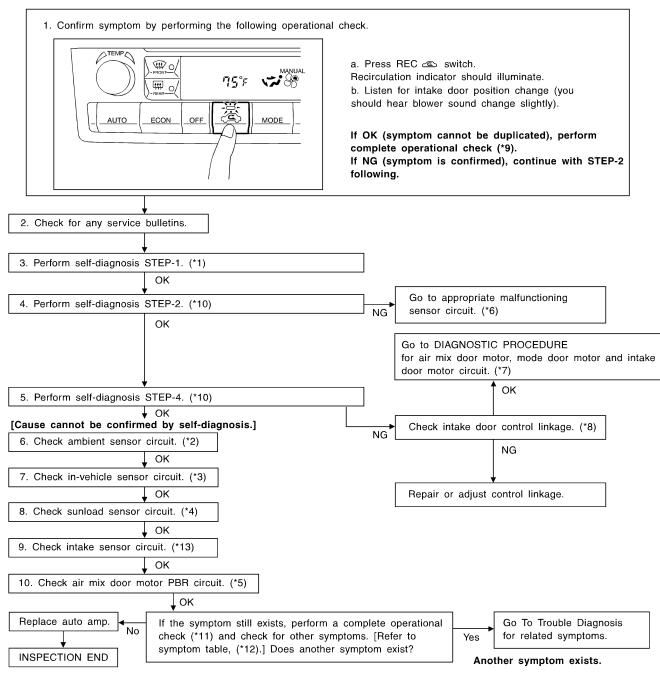
IUI@

BT

НΑ

SC

EL


Intake Door Motor

TROUBLE DIAGNOSIS PROCEDURE FOR INTAKE DOOR (LAN) SYMPTOM:

=NFHA0191

- Intake door does not change.
- Intake door motor does not operate normally.

INSPECTION FLOW

RHA381H

*1: HA-37 *2: HA-94 *3: HA-98 *4: HA-101 *5: HA-107 *6: FUNCTION CONFIRMATION PROCEDURE (HA-38), see No. 13.

*7: HA-66 *8: HA-66 *9: HA-48 *10: HA-38

*11: HA-48 *12: HA-47

*13: HA-105

SYSTEM DESCRIPTION

Component Parts

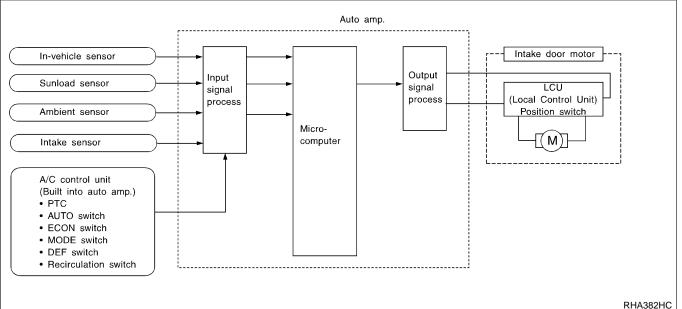
=NFHA0192

NFHA0192S01

Intake door control system components are:

- Auto amp.
- Intake door motor
- In-vehicle sensor
- Ambient sensor
- 5) Sunload sensor
- 6) Intake sensor

System Operation


LC

The intake door control determines intake door position based on the ambient temperature, the intake air temperature and the in-vehicle temperature. When the ECON, DEFROST, or OFF switches are pushed, the auto amplifier sets the intake door at the "Fresh" position.

EC

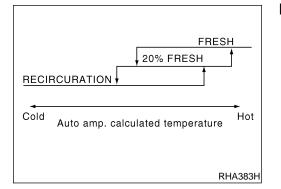
MA

FE

CL

MT

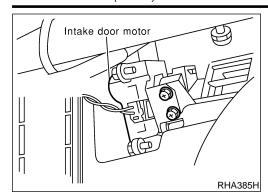
AT


AX

SU

38

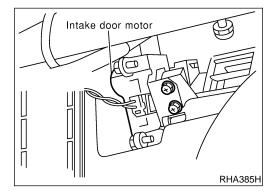
BT


HA

Intake Door Control Specification

NFHA0192S03

COMPONENT DESCRIPTION


The intake door motor is attached to the intake unit. It rotates so that air is drawn from inlets set by the auto amplifier. Motor rotation is conveyed to a lever which activates the intake door.

DIAGNOSTIC PROCEDURE

NEU AO 10 4

SYMPTOM: Intake door motor does not operate normally.

Refer to HA-56.

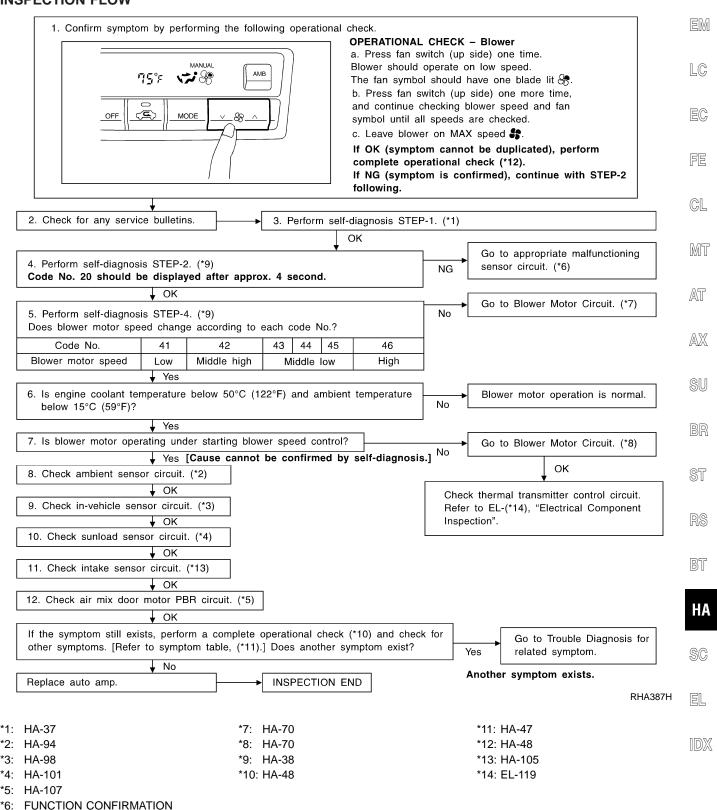
CONTROL LINKAGE ADJUSTMENT Intake Door

NFHA0195

- Install intake door motor on intake unit and connect it to main harness.
- 2. Set up code No. 41 in Self-diagnosis STEP 4. Refer to HA-38.
- 3. Make sure intake door operates properly when changing from code No. ዛ to ዛይ by pushing DEF switch.

4;	42	43	44	45	45
REC		20% FRE		FRE	

Blower Motor


TROUBLE DIAGNOSIS PROCEDURE FOR BLOWER MOTOR SYMPTOM:

=NFHA0196

MA

- Blower motor operation is malfunctioning.
- Blower motor operation is malfunctioning under out of starting fan speed control.

INSPECTION FLOW

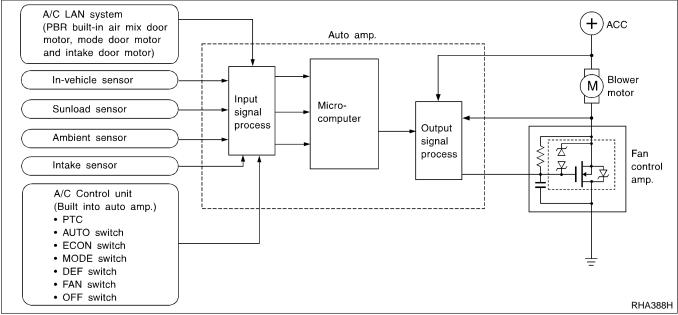
PROCEDURE (HA-38), see No.

13.

SYSTEM DESCRIPTION

Component parts

=NFHA0197


NFHA0197S01

Fan speed control system components are:

- 1) Auto amp.
- Fan control amp.
- A/C LAN system (PBR built-in air mix door motor, mode door motor and intake door motor)
- 4) In-vehicle sensor
- 5) Ambient sensor
- Sunload sensor
- 7) Intake sensor

System Operation

NFHA0197S02

Automatic Mode

NFHA0197S03

In the automatic mode, the blower motor speed is calculated by the automatic amplifier based on inputs from the PBR, in-vehicle sensor, sunload sensor, intake sensor and ambient sensor. The blower motor applied voltage ranges from approximately 5 volts (lowest speed) to 12 volts (highest speed).

The control blower speed (in the range of 5 to 12V), the automatic amplifier supplies a gate voltage to the fan control amplifier. Based on this voltage, the fan control amplifier controls the voltage supplied to the blower motor.

Starting Fan Speed Control

Start Up From "COLD SOAK" Condition (Automatic mode)

In a cold start up condition where the engine coolant temperature is below 50°C (122°F), the blower will not operate for a short period of time (up to 126 seconds). The exact start delay time varies depending on the ambient and engine coolant temperature.

In the most extreme case (very low ambient) the blower starting delay will be 126 seconds as described above. After this delay, the blower will operate at low speed until the engine coolant temperature rises above 55°C (131°F), at which time the blower speed will increase to the objective speed.

AUTO Blower Motor (Cont'd)

Start Up From Normal or "HOT SOAK" Condition (Automatic mode)

The blower will begin operation momentarily after the AUTO button is pushed. The blower speed will gradually rise to the objective speed over a time period of 3 seconds or less (actual time depends on the objective blower speed).

MA

Blower Speed Compensation

Sunload

NFHA0197S05

NFHA0197S0501

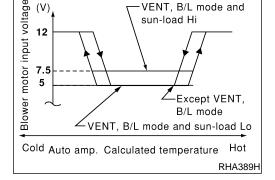
When the in-vehicle temperature and the set temperature are very close, the blower will be operating at low speed. The low speed will vary depending on the sunload. During conditions of high sunload. the blower low speed is "normal" low speed (approx. 6V). During low or no sunload conditions, the low speed will drop to "low" low speed (approx. 5V).

EC

Ambient

When the ambient temperature is in the "moderate" range [10 -15°C (50 - 59°F)], the computed blower voltage will be compensated (reduced) by up to 3.5V (depending on the blower speed). In the "extreme" ambient ranges [below 0°C (32°F) and above 20°C (68°F)] the computed objective blower voltage is not compensated at all. In the ambient temperature ranges between "moderate" and "extreme" [0 - 10°C (32 - 50°F) and 15 - 20°C (59 - 68°F)], the amount of compensation (for a given blower speed) varies depending on the ambient temperature.

MIT


AT

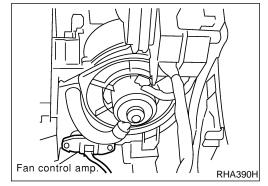
AX

Fan Speed Control Specification

BT

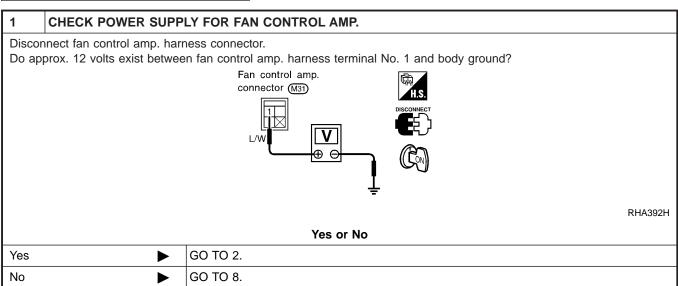
HA

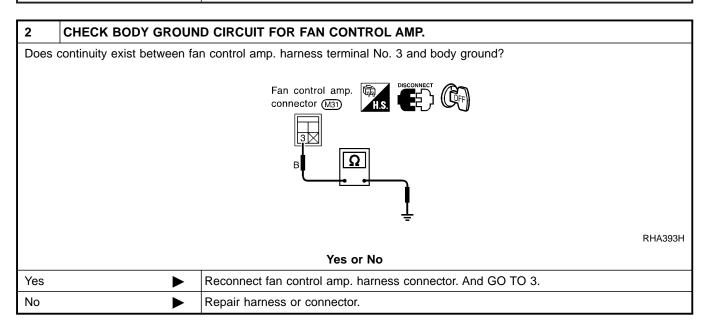
COMPONENT DESCRIPTION


NFHA0198

The fan control amplifier is located on the cooling unit. The fan control amp. receives a gate voltage from the auto amp. to steplessly maintain the blower fan motor voltage in the 5 to 12 volt range (approx.).

SC




AUTO

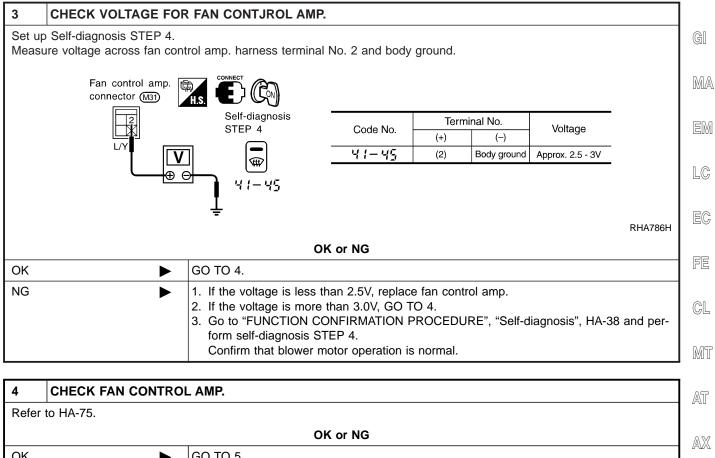
Fuse Fuse Auto amp. Blower motor 34 35 Fan control amp. RHA467G

DIAGNOSTIC PROCEDURE

SYMPTOM: Blower motor operation is malfunctioning under Starting Fan Speed Control.

SU

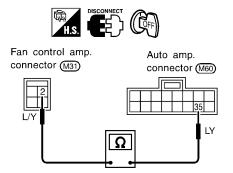
BR


ST

BT

HA

SC


EL

4	CHECK FAN CONTROL AMP.		
Refer	Refer to HA-75.		
	OK or NG		
OK	>	GO TO 5.	
NG	>	 Replace fan control amp. Go to "FUNCTION CONFIRMATION PROCEDURE", "Self-diagnosis", HA-38 and perform self-diagnosis STEP 4. Confirm that blower motor operation is normal. 	

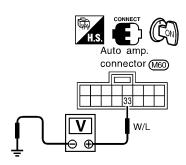
5 CHECK FAN CONTROL AMP. CIRCUIT BETWEEN FAN CONTROL AMP. AND AUTO AMP. (LCU)

- 1. Disconnect auto amp. (LCU) and fan control amp. harness connector.
- 2. Check circuit continuity between auto amp. (LCU) harness terminal No. 35 and fan control amp. harness terminal No. 2.

SHA375F

Continuity should exist.

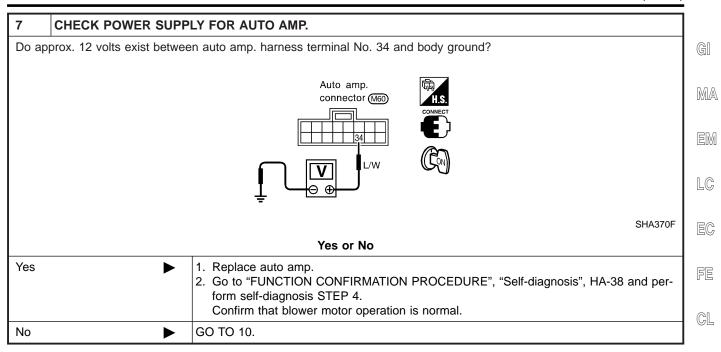
If OK, check harness for short.


OK or NG

OK	•	GO TO 6.
NG	•	Repair harness or connector.

6 CHECK FAN FEED BACK CIRCUIT

Reconnect auto amp. (LCU) harness connector.


Do approx. 12 volts exist between auto amp. (LCU) harness terminal No. 33 and body ground?

SHA371F

Yes or No

Yes	GO TO 7.
No	Check power supply circuit and 15A fuses (Nos. 51 and 52, located in the fuse block). Refer to EL-10, "Wiring Diagram — POWER —". If OK, check for open circuit in wiring harness. Repair or replace as necessary. If NG, replace fuse and check wiring harness for short circuit. Repair or replace as necessary.

8	CHECK POWER SUPP	LY FOR BLOWER MOTOR
	nnect blower motor harnes	s connector. In blower motor harness terminal No. 1 and body ground?
		Blower motor connector (£102) HS. DISCONNECT (CON)
		W/L TV
		RHA091GE
		Yes or No
Yes	>	GO TO 9.
No	•	Check power supply circuit and 15A fuses (No. 51 and 52, located in the fuse block). Check blower motor relay. If OK, check for open circuit in wiring harness. Repair or replace as necessary. If NG, replace fuse and check wiring harness for short circuit. Repair or replace as necessary.

IDX

MT

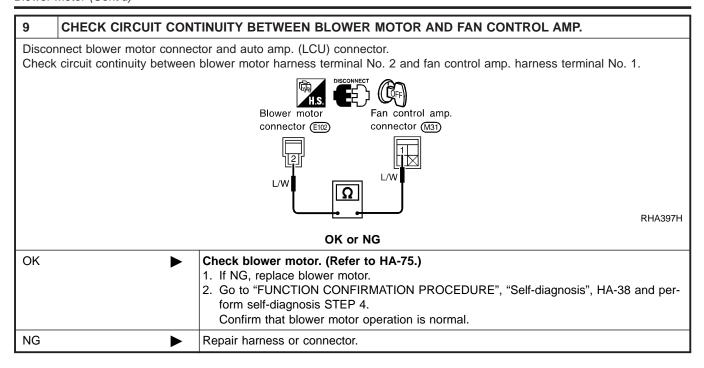
AT

AX

SU

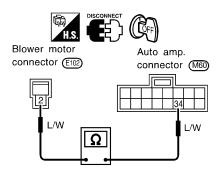
BR

ST


RS

BT

HA

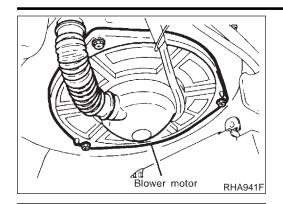

SC

EL

10 CHECK BLOWER MOTOR CIRCUIT BETWEEN BLOWER MOTOR AND AUTO AMP. (LCU)

Check circuit continuity between blower motor harness terminal No. 2 and auto amp. (LCU) harness terminal No. 34.

SHA372F


Continuity should exist.

If OK, check harness for short.

OK or NG

OK ►	INSPECTION END
NG ►	Repair harness or connector.

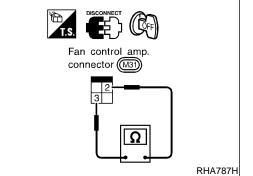
COMPONENT INSPECTIONBlower Motor

NFHA0200

NFHA0200S01

Confirm smooth rotation of the blower motor.

01 G[


Ensure that there are no foreign particles inside the intake unit.

 $\mathbb{M}\mathbb{A}$

LC

EC

FE

Fan Control Amp.

Check continuity between terminal Nos. 2 and 3.

NFHA0200S02

Terminal No.	Continuity
2 - 3	Yes

CL

__

MT

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

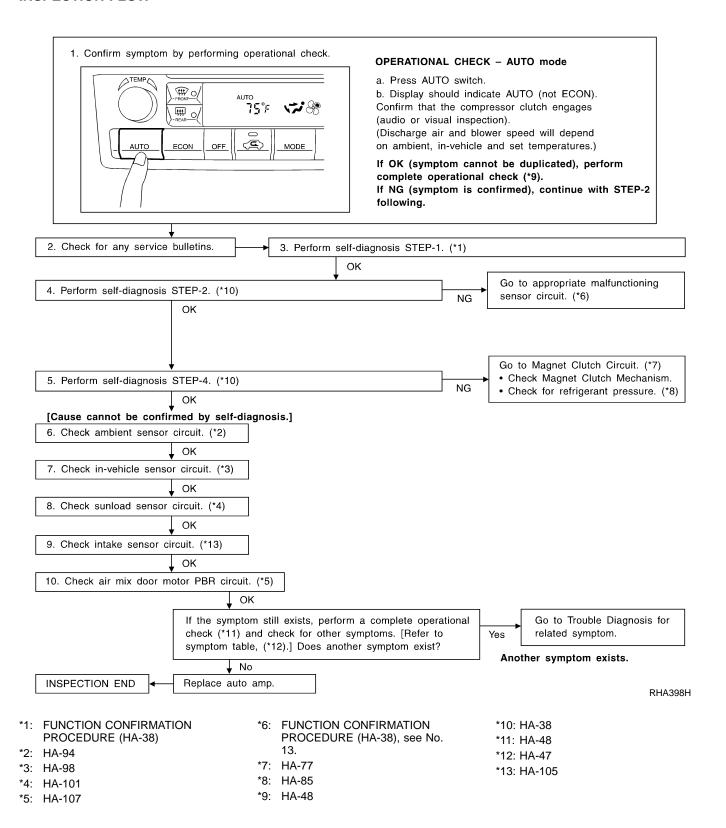
RS

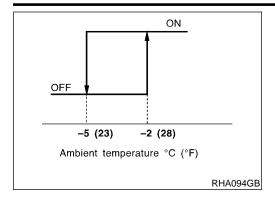
BT

HA

SC

EL


Magnet Clutch


TROUBLE DIAGNOSIS PROCEDURE FOR MAGNET CLUTCH SYMPTOM:

=NFHA0201

Magnet clutch does not engage.

INSPECTION FLOW

AIR CONDITIONER

51 46

45

RELAY

58 81 111

REFRIGERANT PRESSURE SENSOR

27

ECM

IGNITION ON

COMP-

RESSER

SYSTEM DESCRIPTION

Auto amplifier controls compressor operation by ambient temperature and signal from ECM.

Low Temperature Protection Control

Auto amplifier will turn the compressor "ON" or "OFF" as determined by a signal detected by ambient sensor.

When ambient temperatures are greater than -2°C (28°F), the compressor turns "ON". The compressor turns "OFF" when ambient temperatures are less than -5°C (23°F).

EM

LC

DIAGNOSTIC PROCEDURE

SYMPTOM: Magnet clutch does not engage when AUTO switch is ON.

FE

GL

MT

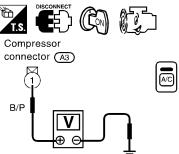
AT

AX

SU

CHECK POWER SUPPLY FOR COMPRESSOR

23

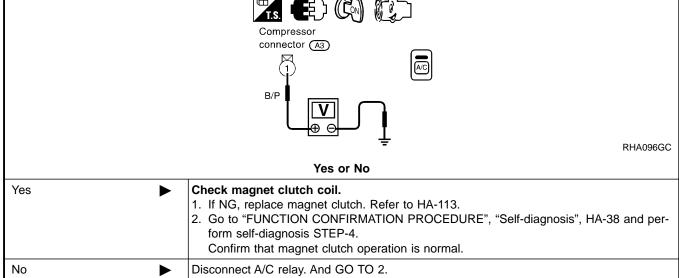

22

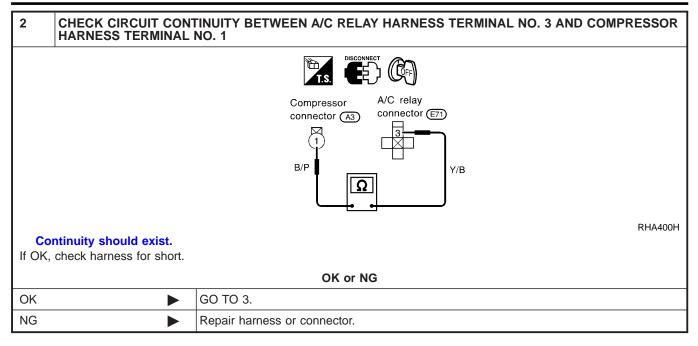
AUTO

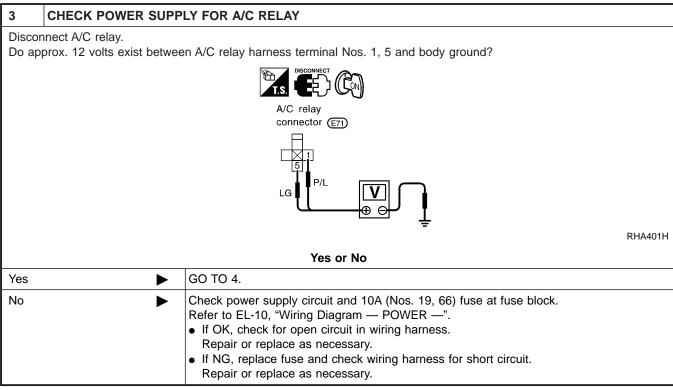
RHA399H

AMP.

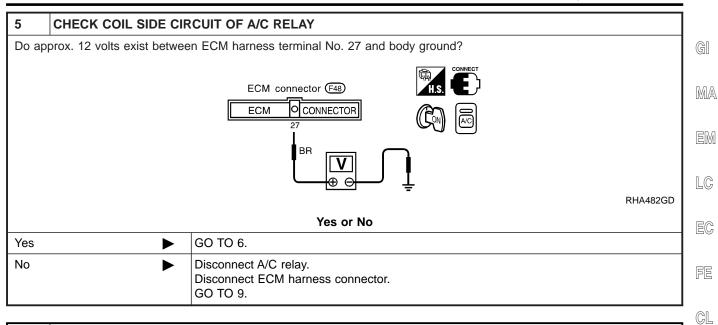
Disconnect compressor harness connector. Do approx. 12 volts exist between compressor harness terminal No. 1 and body ground?

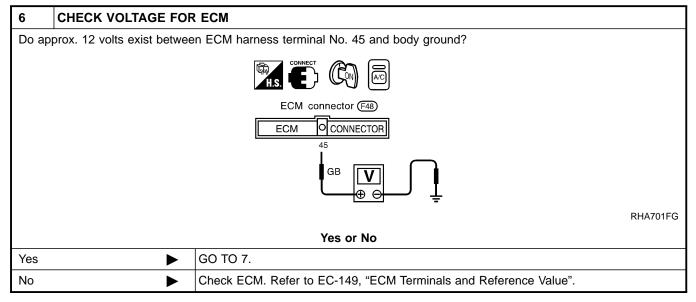

ST


BT


HA

SC


EL



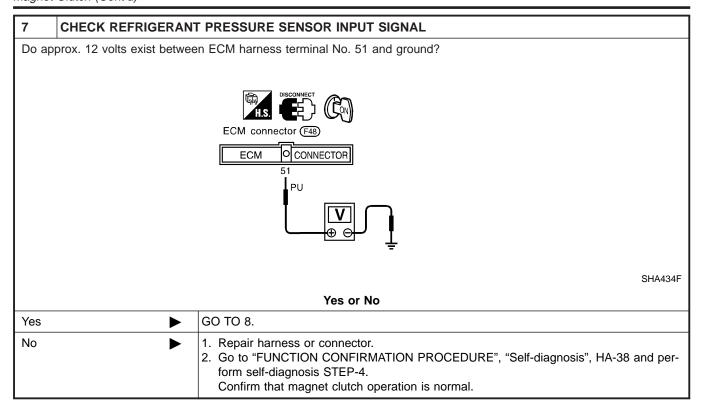
4	CHECK A/C RELAY AFTER DISCONNECTING IT				
Refer	Refer to HA-81.				
		OK or NG			
OK	•	Reconnect A/C relay. And GO TO 5.			
NG	>	 Replace A/C relay. Go to "FUNCTION CONFIRMATION PROCEDURE", "Self-diagnosis", HA-38 and perform self-diagnosis STEP-4. Confirm that magnet clutch operation is normal. 			

IDX

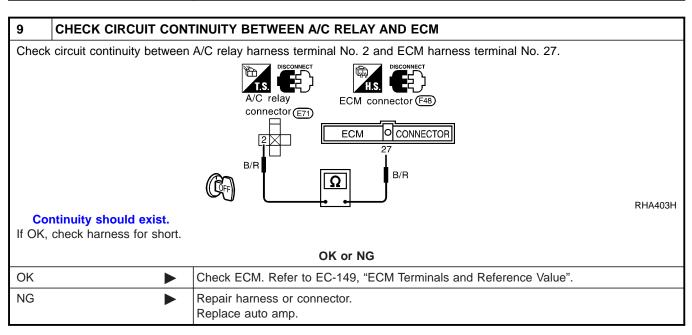
MT

AT

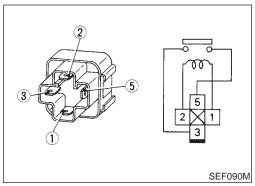
AX

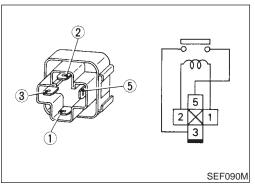

SU

ST

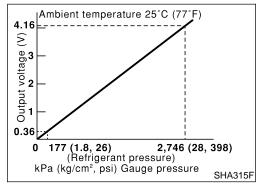

BT

SC


EL



8	8 CHECK REFRIGERANT PRESSURE SENSOR				
Refer	Refer to HA-81.				
	OK or NG				
ОК	OK ▶ GO TO 9.				
NG	NG Replace refrigerant pressure sensor.				



AUTO Magnet Clutch (Cont'd)

/ /	3) /////////////////////////////////
Refrigerant	pressure sensor
MIII / / /	RHA404H

COMPONENT INSPECTION A/C Relay

NFHA0204

GI

MA

EM

LC

NFHA0204S01

Check continuity between terminal Nos. 3 and 5.

Conditions	Continuity
12V direct current supply between terminal Nos. 1 and 2	Yes
No current supply	No

If NG, replace relay.

Refrigerant Pressure Sensor

Make sure that higher A/C refrigerant pressure results in higher refrigerant pressure results in higher refrigerant-pressure sensor output voltage.

EC

FE

GL

MT

AT

AX

SU

BR

ST

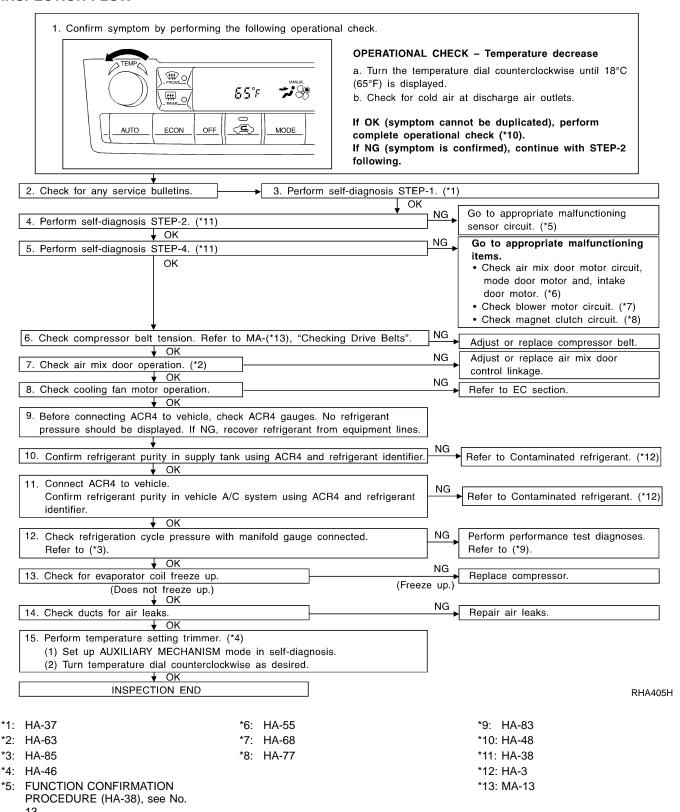
RS

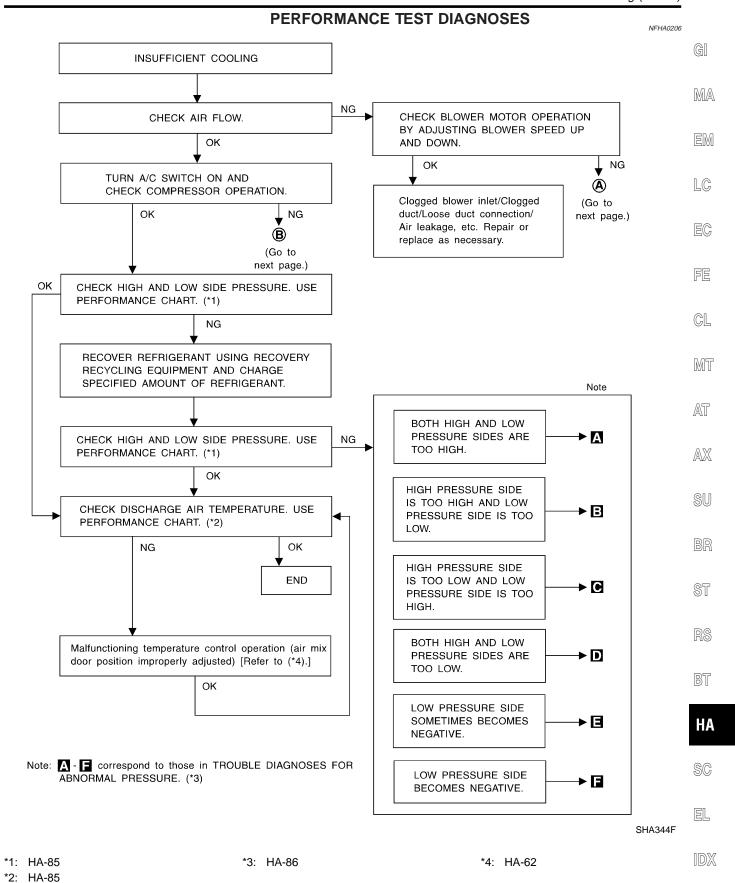
BT

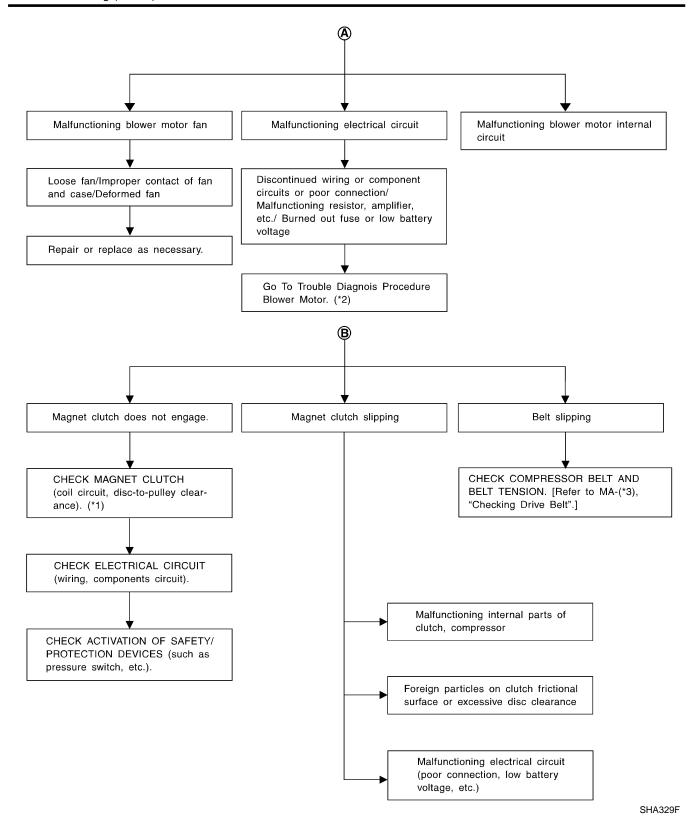
HA

SC

EL


Insufficient Cooling


TROUBLE DIAGNOSIS PROCEDURE FOR INSUFFICIENT COOLING SYMPTOM:


=NFHA0205

Insufficient cooling

Insufficient Cooling (Cont'd)

ERFORMANCE TE est Condition				NFHA0207 NFHA0207S01
Testing must be performed as follows: Vehicle location Indoors or in the sha			e (in a well-ventilated place)	
Doors	Closed	TI THE SHAUE	(iii a weii-veritiiated piace)	
Door windows				
	Open			
Hood	Open May COLD			
TEMP.	Max. COLD			
Mode switch	(Ventila		4	
REC switch		circulation) s	Set	
% (blower) speed	Max. speed	I set		
Engine speed Operate the air conditionir	Idle speed			
Test Reading Recirculating-to-disc			T	NFHA0207S02 NFHA0207S0201
Inside air (Recirculat	ing air) at blower assembl	y inlet	Discharge air ten	nperature at center ventilator
Relative humidity %	Air tempera °C (°F)	ture	°C (°F)	
	15 (59)		3.5 - 5.4 (38 - 42)	
	20 (68)		6.6 - 8.9 (44 - 48)	
50 - 60	25 (77)		9.5 - 12.6 (49 - 55)	
	30 (86)		13.4 - 16.5 (56 - 62)	
	35 (95)		17.6 - 21.3 (64 - 70)	
	15 (59)		5.4 - 7.1 (42 - 45)	
	20 (68)		8.9 - 11.0 (48 - 52)	
60 - 70	25 (77)		12.6 - 15.4 (55 - 60)	
	30 (86)		16.5 - 20.0 (62 - 68)	
	35 (95)	35 (95)		- 24.8 (70 - 77)
Ambient Air Tempera	ture-to-operating Pr	essure T	able	NFHA0207S0202
Ambie	ent air	High-n	oressure (Discharge side)	Low-pressure (Suction side)
Relative humidity %	Air temperature °C (°F)		kPa (kg/cm ² , psi)	kPa (kg/cm², psi)
	15 (59)		539 - 657 (5.5 - 6.7, 78 - 95)	177 - 216 (1.8 - 2.2, 26 - 31)
	20 (68)	(677 - 824 (6.9 - 8.4, 98 - 119)	167 - 206 (1.7 - 2.1, 24 - 30)

Ambient air		High procesure (Discharge side)	Law process (Custing side)	
Relative humidity %	Air temperature °C (°F)	High-pressure (Discharge side) kPa (kg/cm², psi)	Low-pressure (Suction side) kPa (kg/cm², psi)	
	15 (59)	539 - 657 (5.5 - 6.7, 78 - 95)	177 - 216 (1.8 - 2.2, 26 - 31)	
	20 (68)	677 - 824 (6.9 - 8.4, 98 - 119)	167 - 206 (1.7 - 2.1, 24 - 30)	
50 - 70	25 (77)	843 - 1,030 (8.6 - 10.5, 122 - 149)	177 - 226 (1.8 - 2.3, 26 - 33)	
	30 (86)	1,030 - 1,275 (10.5 - 13.0, 149 - 185)	216 - 255 (2.2 - 2.6, 31 - 37)	
	35 (95)	1,245 - 1,520 (12.7 - 15.5, 181 - 220)	265 - 324 (2.7 - 3.3, 38 - 47)	

TROUBLE DIAGNOSES FOR ABNORMAL PRESSURE

JEHA0208

Whenever system's high and/or low side pressure is abnormal, diagnose using a manifold gauge. The marker above the gauge scale in the following tables indicates the standard (normal) pressure range. Since the standard (normal) pressure, however, differs from vehicle to vehicle, refer to HA-85 ("Ambient air temperature-to-operating pressure table").

Both High and Low-pressure Sides are Too High.

NFHA0208S01

Gauge indication	Refrigerant cycle	Probable cause	Corrective action
Both high and low-pressure sides are too high.	Pressure is reduced soon after water is splashed on condenser.	Excessive refrigerant charge in refrigeration cycle	Reduce refrigerant until specified pressure is obtained.
	Air suction by cooling fan is insufficient.	Insufficient condenser cooling performance ↓ 1. Condenser fins are clogged. 2. Improper fan rotation of cooling fan	 Clean condenser. Check and repair cooling fan as necessary.
LO HI AC359A	 Low-pressure pipe is not cold. When compressor is stopped high-pressure value quickly drops by approximately 196 kPa (2 kg/cm², 28 psi). It then decreases gradually thereafter. 	Poor heat exchange in condenser (After compressor operation stops, high pressure decreases too slowly.) Air in refrigeration cycle	Evacuate repeatedly and recharge system.
	Engine tends to overheat.	Engine cooling systems mal- function.	Check and repair each engine cooling system.
	 An area of the low-pressure pipe is colder than areas near the evaporator outlet. Plates are sometimes covered with frost. 	Excessive liquid refrigerant on low-pressure side Excessive refrigerant discharge flow Expansion valve is open a little compared with the specification. Improper thermal valve installation Improper expansion valve adjustment	Replace expansion valve.

High-pressure Side is Too High and Low-pressure Side is Too Low.

light-pressure side is 100	ingii and Low-pressui	e Side is 100 Low.	NFHA0208S02	
Gauge indication	Refrigerant cycle	Probable cause	Corrective action	GI
High-pressure side is too high and low-pressure side is too low.	Upper side of condenser and high-pressure side are hot, however, liquid tank is not so hot.	High-pressure tube or parts located between compressor and condenser are clogged or crushed.	 Check and repair or replace malfunctioning parts. Check lubricant for con- tamination. 	MA
				LG
				EG

High-pressure Side is Too Low and Low-pressure Side is Too High.

NFHA0208S03

8503 GL

FE

Gauge indication	Refrigerant cycle	Probable cause	Corrective action	
High-pressure side is too low and low-pressure side is too high.	High and low-pressure sides become equal soon after compressor operation stops.	Compressor pressure operation is improper.	Replace compressor.	MT
	compression operation etopol	Damaged inside compressor packings		AT
				$\mathbb{A}\mathbb{X}$
	No temperature difference between high and low-pressure sides	Compressor pressure operation is improper.	Replace compressor.	SU
(LO) (HI)		Damaged inside compressor packings.		BR
——————————————————————————————————————				ST

RS

BT

HA

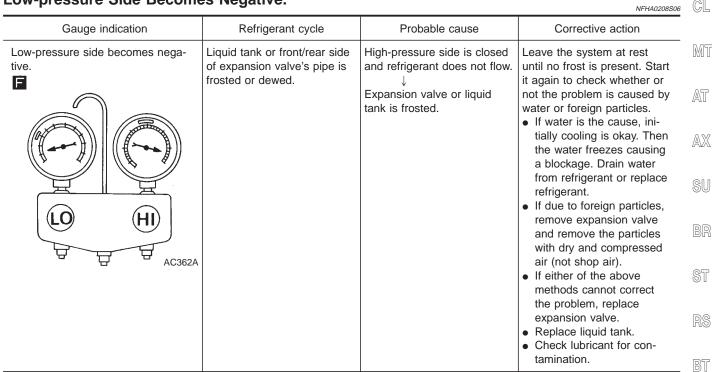
SC

EL

Both High- and Low-pressure Sides are Too Low.

NFHA0208S04 Gauge indication Refrigerant cycle Probable cause Corrective action Both high- and low-pressure sides There is a big temperature Compressor discharge · Replace liquid tank. are too low. difference between capacity does not change. Check lubricant for conreceiver drier outlet and (Compressor stroke is set at D tamination. inlet. Outlet temperature is maximum.) extremely low. Liquid tank inlet and expansion valve are frosted. • Temperature of expansion High-pressure pipe located · Check and repair malfuncvalve inlet is extremely low between receiver drier and tioning parts. Check lubricant for conas compared with areas expansion valve is clogged. near liquid tank. tamination. Expansion valve inlet may be frosted. Temperature difference AC353A occurs somewhere in highpressure side Check refrigerant for leaks. Expansion valve and liquid Low refrigerant charge Refer to "Checking Refrigertank are warm or only cool ant Leaks", HA-120. when touched. Leaking fittings or components There is a big temperature Expansion valve closes a Remove foreign particles by using compressed air. difference between expanlittle compared with the sion valve inlet and outlet specification. · Check lubricant for conwhile the valve itself is tamination. 1. Improper expansion valve frosted. adjustment 2. Malfunctioning thermal valve 3. Outlet and inlet may be clogged. Low-pressure pipe is clogged · Check and repair malfunc-An area of the low-pressure pipe is colder than areas or crushed. tioning parts. near the evaporator outlet. · Check lubricant for contamination. Air flow volume is not Evaporator is frozen. Replace compressor. enough or is too low. Compressor discharge capacity does not change. (Compressor stroke is set at

maximum length.)


Insufficient Cooling (Cont'd)

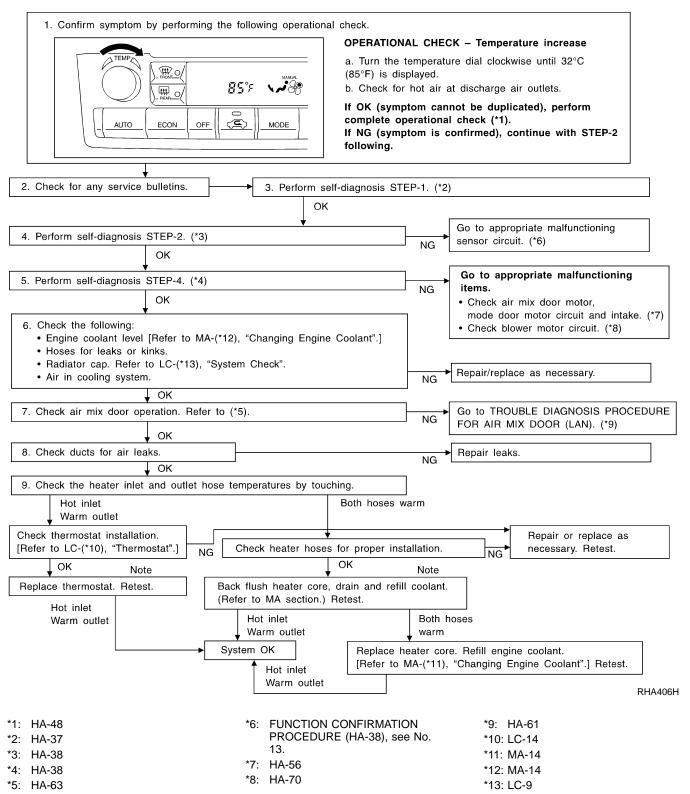
Low-pressure Side Sometimes Becomes Negative.

NFHA0208S05

			7477710200000	
Gauge indication	Refrigerant cycle	Probable cause	Corrective action	G[
Low-pressure side sometimes becomes negative.	Air conditioning system does not function and does not cyclically cool the compartment air.	Moisture is frozen at expan-	 Drain water from refrigerant or replace refrigerant. Replace liquid tank. 	MA
	The system constantly functions for a certain period of time after com-	sion valve outlet and inlet.		EM
	pressor is stopped and restarted.	ant.		LG
				EC
AC354A				FE

Low-pressure Side Becomes Negative.

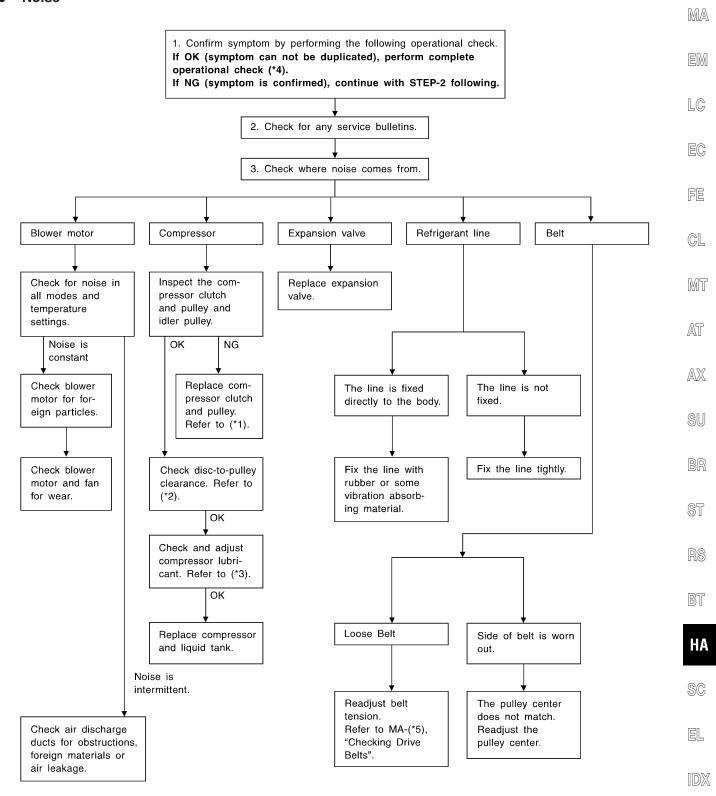
HA


Insufficient Heating

TROUBLE DIAGNOSIS PROCEDURE FOR INSUFFICIENT HEATING SYMPTOM:

=NFHA0209

Insufficient heating



=NFHA0210

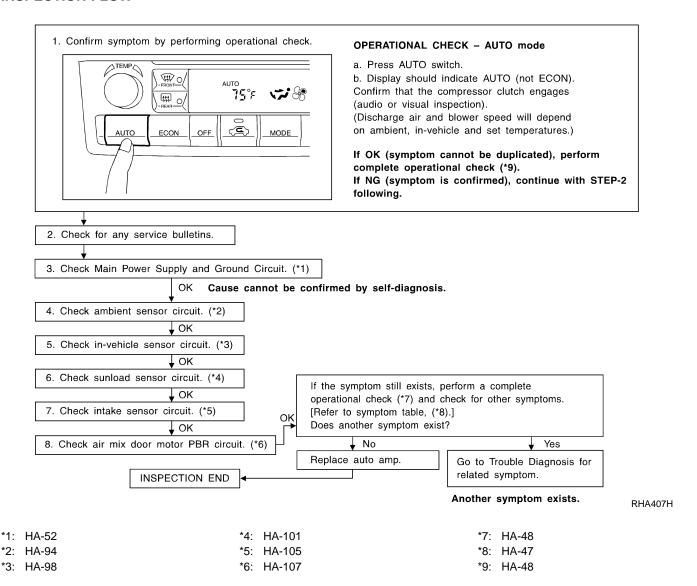
Noise

TROUBLE DIAGNOSIS PROCEDURE FOR NOISE SYMPTOM:

Noise

SHA331F

*1: HA-113 *2: HA-115 *3: HA-110 *4: HA-48 *5: MA-13


Self-diagnosis

TROUBLE DIAGNOSIS PROCEDURE FOR SELF-DIAGNOSIS SYMPTOM:

=NFHA0211

Self-diagnosis cannot be performed.

INSPECTION FLOW

Memory Function

TROUBLE DIAGNOSIS PROCEDURE FOR MEMORY FUNCTION SYMPTOM:

=NFHA0212

MA

EM

LC

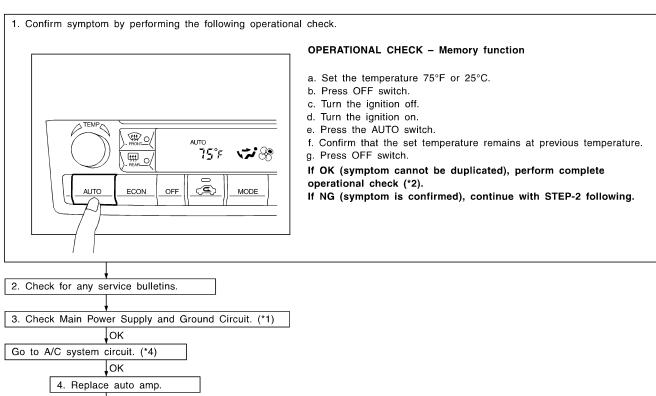
EC

FE

GL

MT

AT


AX

SU

ST

Memory function does not operate.

INSPECTION FLOW

SHA322F

*1: HA-52 *2: HA-48

5. FINAL CHECK

Go to self-diagnosis step-by-step procedure (*3) and perform self-diagnosis STEP-2.

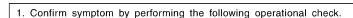
Confirm that code No. 20 is displayed.

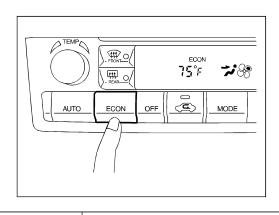
*3: HA-38 *4: HA-52

HA

BT

SC


ECON (ECONOMY) Mode

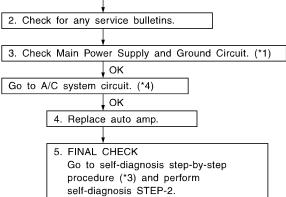

TROUBLE DIAGNOSIS PROCEDURE FOR ECON (ECONOMY) MODE SYMPTOM:

=NFHA0213

ECON mode does not operate.

INSPECTION FLOW

OPERATIONAL CHECK - ECON (ECONOMY) mode

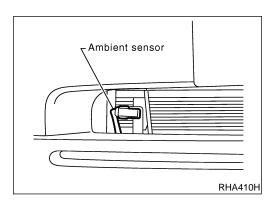

- a. Set the temperature 75°F or 25°C.
- b. Press ECON switch.
- c. Display should indicate ECON (not AUTO).

Confirm that the compressor clutch is not engaged (visual inspection).

(Discharge air and blower speed will depend on ambient, in-vehicle, and set temperatures.)

If OK (symptom cannot be duplicated), perform complete operational check (*2).

If NG (symptom is confirmed), continue with STEP-2 following.



Confirm that code No. 20 is displayed.

SHA323F

*1: HA-52 *2: HA-48 *3: HA-38

*4: HA-52

Ambient Sensor Circuit COMPONENT DESCRIPTION

The ambient sensor is attached in front of the driver's side condenser. It detects ambient temperature and converts it into a resistance value which is then input into the auto amplifier.

AMBIENT TEMPERATURE INPUT PROCESS

The automatic amplifier includes a "processing circuit" for the ambient sensor input. However, when the temperature detected by the ambient sensor increases quickly, the processing circuit retards the auto amp. function. It only allows the auto amp. to recognize an ambient temperature increase of 0.33°C (0.6°F) per 100 seconds. As an example, consider stopping for a cup of coffee after high speed driving. Although the actual ambient temperature has not changed, the temperature detected by the ambient sensor will increase. This is because the heat from the engine compartment can radiate to the front grille area, location of the ambient sensor.

SIII

MA

LC

DIAGNOSTIC PROCEDURE

Ambient sensor

Yes

No

SYMPTOM: Ambient sensor circuit is open or shorted. ($\frac{\partial^2 F}{\partial x^2}$ or $-\frac{\partial F}{\partial x}$ is indicated on the display as a result of conducting Self-diagnosis STEP 2.)

CL

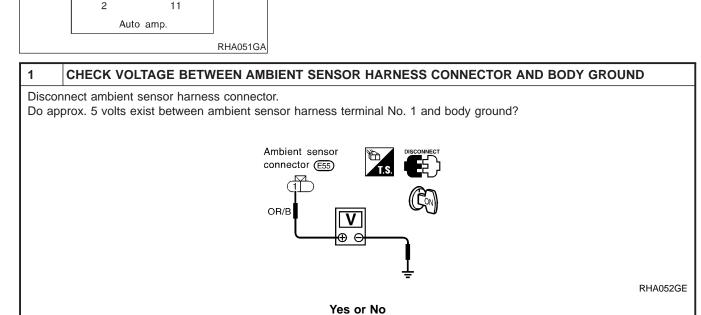
MT

AT

SU

BR

ST


തര

RS

BT

ΗA

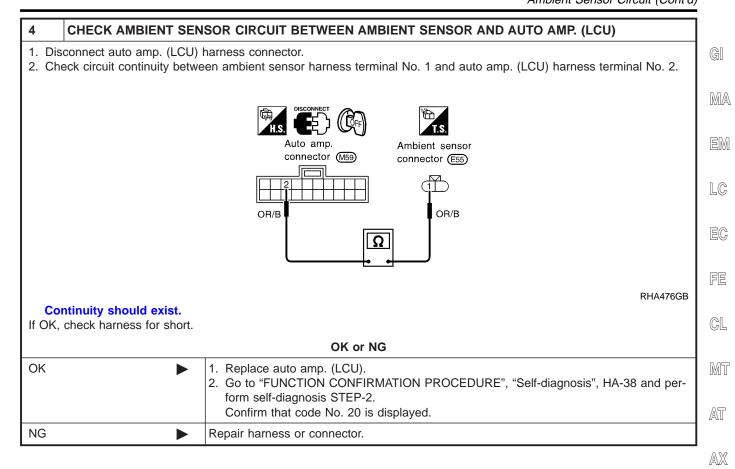
SC

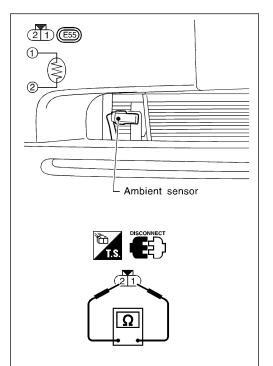
GO TO 2.

GO TO 4.

OK

NG


2 CHECK AMBIENT SENSOR CIRCUIT BETWEEN AMBIENT SENSOR AND AUTO AMP. (LCU) 1. Disconnect auto amp. (LCU) harness connector. 2. Check circuit continuity between ambient sensor harness terminal No. 2 and auto amp. (LCU) harness terminal No. 11. Ambient sensor connector (LEU) Ambient sensor connector (LEU) B/Y Continuity should exist. If OK, check harness for short.


3	CHECK AMBIENT SEN	SOR
Refer	to HA-97.	
		OK or NG
OK	>	Replace auto amp. (LCU). Go to "FUNCTION CONFIRMATION PROCEDURE", "Self-diagnosis", HA-38 and perform self-diagnosis STEP-2. Confirm that code No. 20 is displayed.
NG	>	Replace ambient sensor.

GO TO 3.

Repair harness or connector.

COMPONENT INSPECTION

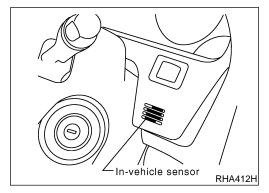
Ambient Sensor

After disconnecting ambient sensor harness connector, measure resistance between terminals 2 and 1 at sensor harness side, using the table below.

Temperature °C (°F)	Resistance kΩ
-15 (5)	12.73
-10 (14)	9.92
-5 (23)	7.80
0 (32)	6.19
5 (41)	4.95
10 (50)	3.99
15 (59)	3.24
20 (68)	2.65
25 (77)	2.19
30 (86)	1.81

BT

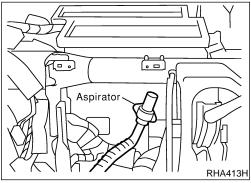
SC


SU

RHA411H

Temperature °C (°F)	Resistance kΩ
35 (95)	1.51
40 (104)	1.27
45 (113)	1.07

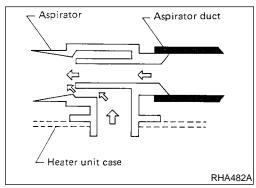
If NG, replace ambient sensor.



In-vehicle Sensor Circuit COMPONENT DESCRIPTION

In-vehicle sensor

NFHA0218


The in-vehicle sensor is located on instrument lower panel. It converts variations in temperature of compartment air drawn from the aspirator into a resistance value. It is then input into the auto amplifier.

Aspirator

NFHA0218S02

The aspirator is located in front of heater unit. It produces vacuum pressure due to air discharged from the heater unit, continuously taking compartment air in the aspirator.

In-vehicle sensor Auto amp. RHA056GB

DIAGNOSTIC PROCEDURE

SYMPTOM: In-vehicle sensor circuit is open or shorted. (c'c' or -∂∂ is indicated on the display as a result of conducting Selfdiagnosis STEP 2.)

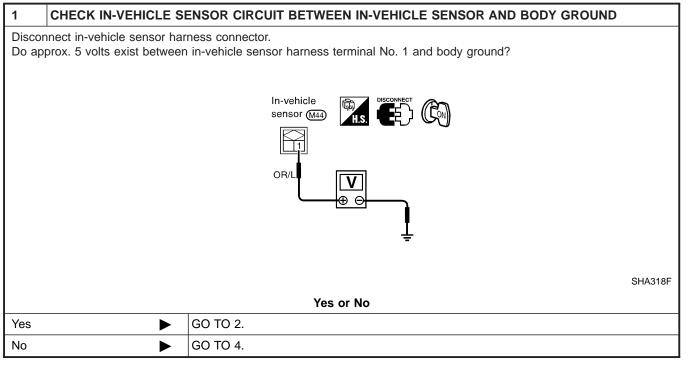
MA

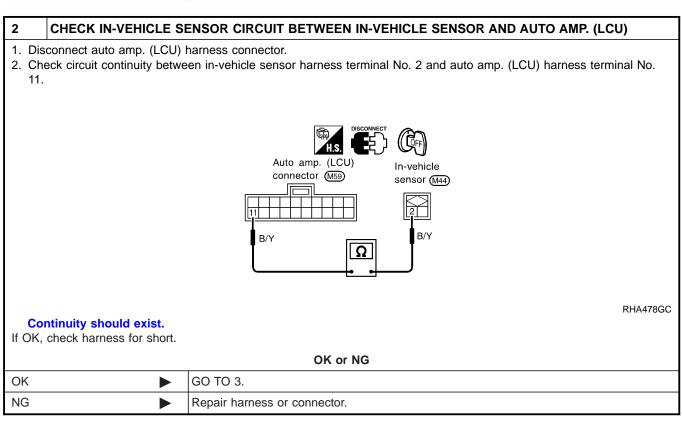
LC

EC

FE

GL

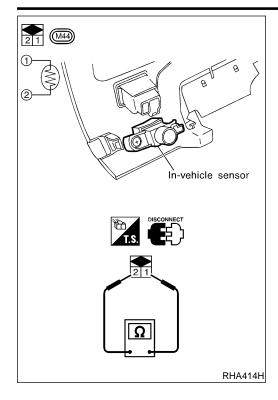

MT


AT

AX

HA

SC

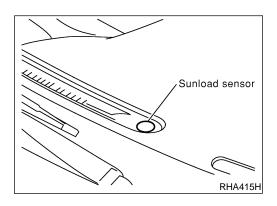

NG

3	CHECK IN-VEHICLE SI	ENSOR
Refe	er to HA-101.	
		OK or NG
OK	>	 Replace auto amp. Go to "FUNCTION CONFIRMATION PROCEDURE", "Self-diagnosis", HA-38 and perform self-diagnosis STEP-2. Confirm that code No. 20 is displayed.
NG	>	 Replace in-vehicle sensor. Go to "FUNCTION CONFIRMATION PROCEDURE", "Self-diagnosis", HA-38 and perform self-diagnosis STEP-2. Confirm that code No. 20 is displayed.

CHECK IN-VEHICLE SENSOR CIRCUIT BETWEEN AMBIENT SENSOR AND AUTO AMP. (LCU) 1. Disconnect auto amp. (LCU) harness connector. 2. Check circuit continuity between in-vehicle sensor harness terminal No. 1 and auto amp. (LCU) harness terminal No. 3. Auto amp. (LCU) In-vehicle connector M59 sensor (M44) OR/L OR/L RHA479GC Continuity should exist. If OK, check harness for short. OK or NG OK 1. Replace auto amp. (LCU). 2. Go to "FUNCTION CONFIRMATION PROCEDURE", "Self-diagnosis", HA-38 and perform self-diagnosis STEP-2. Confirm that code No. 20 is displayed.

Repair harness or connector.

In-vehicle Sensor Circuit (Cont'd)


COMPONENT INSPECTION

In-vehicle Sensor

NFHA0220S01 After disconnecting in-vehicle sensor harness connector, measure resistance between terminals 1 and 2 at sensor harness side, using the table below.

Temperature °C (°F)	Resistance $k\Omega$
-15 (5)	12.73
-10 (14)	9.92
-5 (23)	7.80
0 (32)	6.19
5 (41)	4.95
10 (50)	3.99
15 (59)	3.24
20 (68)	2.65
25 (77)	2.19
30 (86)	1.81
35 (95)	1.51
40 (104)	1.27
45 (113)	1.07

If NG, replace in-vehicle sensor.

Sunload Sensor Circuit COMPONENT DESCRIPTION

The sunload sensor is located on the right defroster grille. It detects sunload entering through windshield by means of a photo diode. The sensor converts the sunload into a current value which is then input into the auto amplifier.

HA

SUNLOAD INPUT PROCESS

The auto amp. also includes a processing circuit which "average" the variations in detected sunload over a period of time. This prevents drastic swings in the ATC system operation due to small or quick variations in detected sunload.

For example, consider driving along a road bordered by an occasional group of large trees. The sunload detected by the sunload sensor will vary whenever the trees obstruct the sunlight. The processing circuit averages the detected sunload over a period of time, so that the (insignificant) effect of the trees momentarily

LC

EC

FE

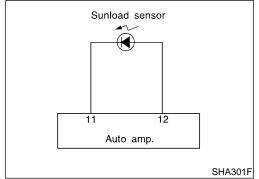
GL

MT

AT

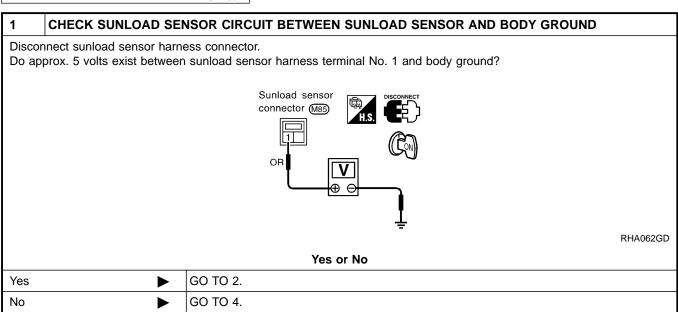
SU

AX

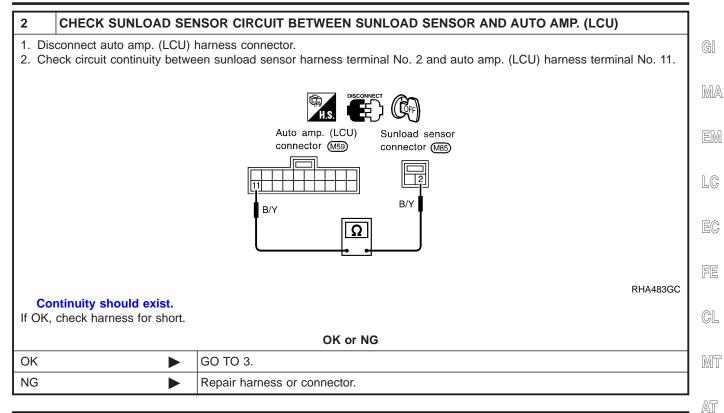

ST

BT

SC



obstructing the sunlight does not cause any change in the ATC system operation. On the other hand, shortly after entering a long tunnel, the system will recognize the change in sunload, and the system will react accordingly.



DIAGNOSTIC PROCEDURE

SYMPTOM: Sunload sensor circuit is open or shorted. (25 or -25 is indicated on the display as a result of conducting Self-diagnosis STEP 2.)

Sunload Sensor Circuit (Cont'd)

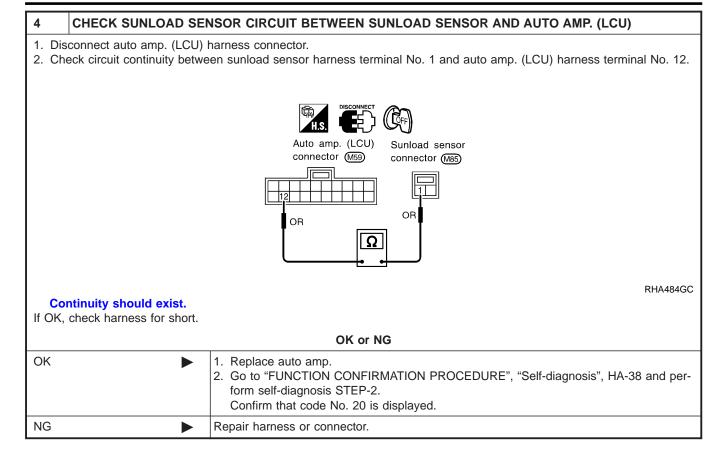
3	CHECK SUNLOAD SE	NSOR	1
Refe	r to HA-104.		1
		OK or NG	l
OK	>	Replace auto amp. (LCU). Go to "FUNCTION CONFIRMATION PROCEDURE", "Self-diagnosis", HA-38 and perform self-diagnosis STEP-2. Confirm that code No. 20 is displayed.	
NG	>	 Replace sunload sensor. Go to "FUNCTION CONFIRMATION PROCEDURE", "Self-diagnosis", HA-38 and perform self-diagnosis STEP-2. Confirm that code No. 20 is displayed. 	

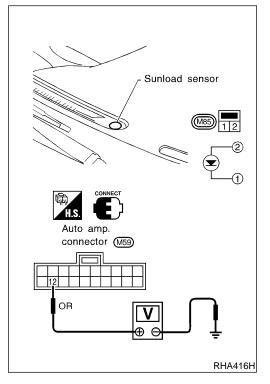
RS

AX

SU

BR


ST


BT

HA

SC

COMPONENT INSPECTION

Sunload Sensor

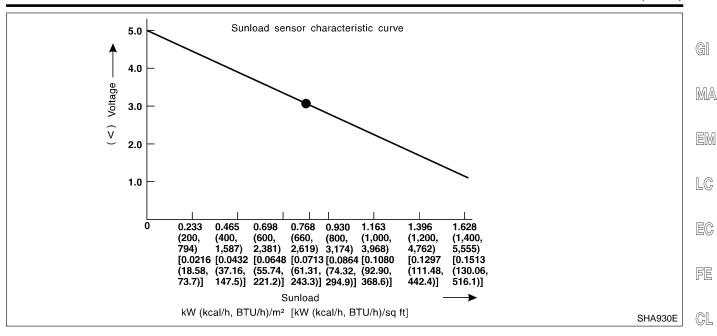
NFHA0224

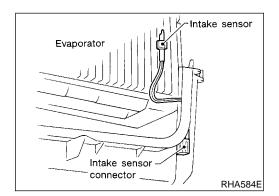
Measure voltage between auto amp. terminal 12 and body ground. If NG, replace sunload sensor.

When checking sunload sensor, select a place where sun shines directly on it.

MT

AT


ST


BT

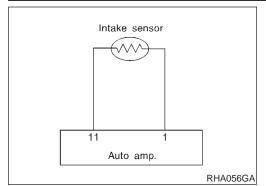
HA

SC

EL

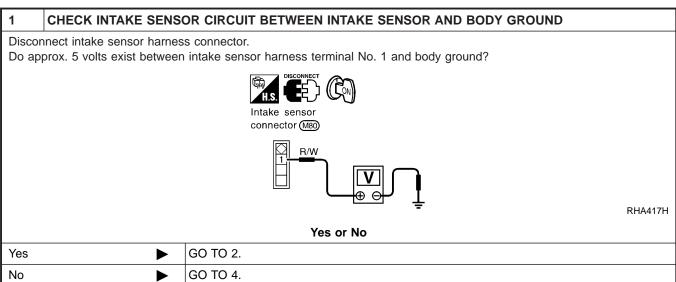
Intake Sensor Circuit COMPONENT DESCRIPTION Intake Sensor

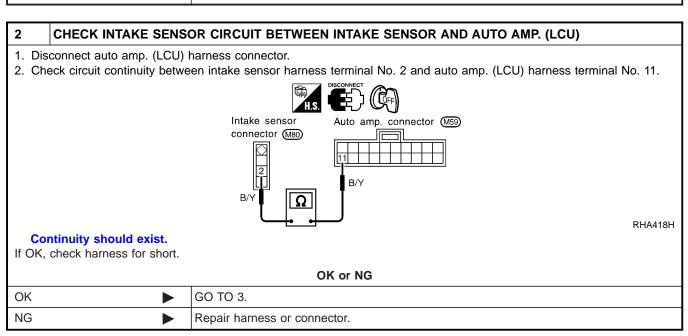
THE DECORN HON

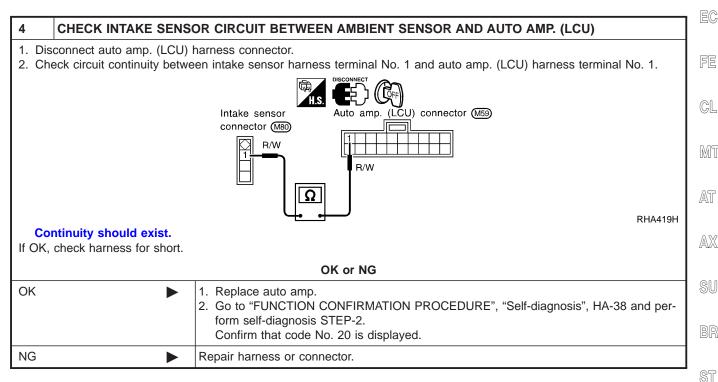

The intake sensor is located on the cooling unit. It converts temperature of air after it passes through the evaporator into a resistance value which is then input to the auto amp.

After disconnecting intake sensor harness connector, measure resistance between terminals 1 and 2 at sensor harness side, using the table below.

Temperature °C (°F)	Resistance $k\Omega$
-15 (5)	12.73
-10 (14)	9.92
-5 (23)	7.80
0 (32)	6.19
5 (41)	4.95
10 (50)	3.99
15 (59)	3.24
20 (68)	2.65
25 (77)	2.19
30 (86)	1.81
35 (95)	1.51
40 (104)	1.27
45 (113)	1.07


If NG, replace intake sensor.


AUTO


DIAGNOSTIC PROCEDURE

SYMPTOM: Intake sensor circuit is open or shorted. (さい or - でい is indicated on the display as a result of conducting Self-diagnosis STEP 2.)

3	CHECK INTAKE SENSOR		
Refe	er to HA-105.	1	
	OK or NG		
OK	 Replace auto amp. Go to "FUNCTION CONFIRMATION PROCEDURE", "Self-diagnosis", HA-38 and perform self-diagnosis STEP-2. Confirm that code No. 20 is displayed. 		
NG	 Replace intake sensor. Go to "FUNCTION CONFIRMATION PROCEDURE", "Self-diagnosis", HA-38 and perform self-diagnosis STEP-2. Confirm that code No. 20 is displayed. 		

Air Mix Door Motor PBR Circuit DIAGNOSTIC PROCEDURE

For description of air mix door motor, mode door motor and intake door motor circuit, refer to HA-62.

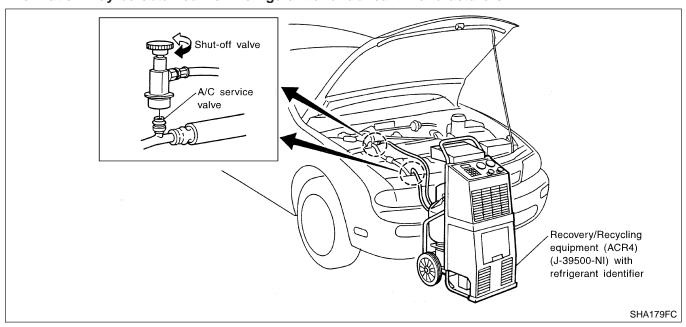
SC

SYMPTOM: If PBR circuit is open or shorted. (-25 or 25 is indicated on the display as a result of conducting Self-diagnosis STEP 2.)

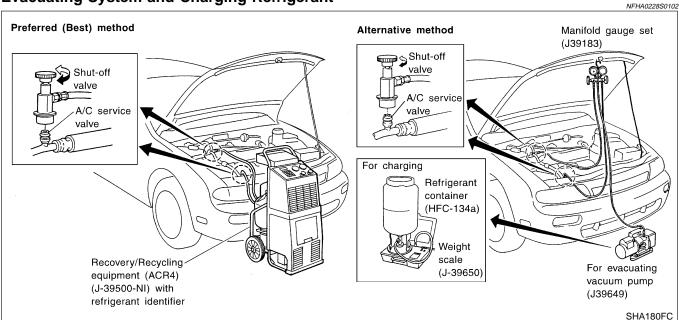
Perform diagnostic procedure for air mix door motor, mode door motor and intake. Refer to HA-56.

HFC-134a (R-134a) Service Procedure

SETTING OF SERVICE TOOLS AND EQUIPMENT

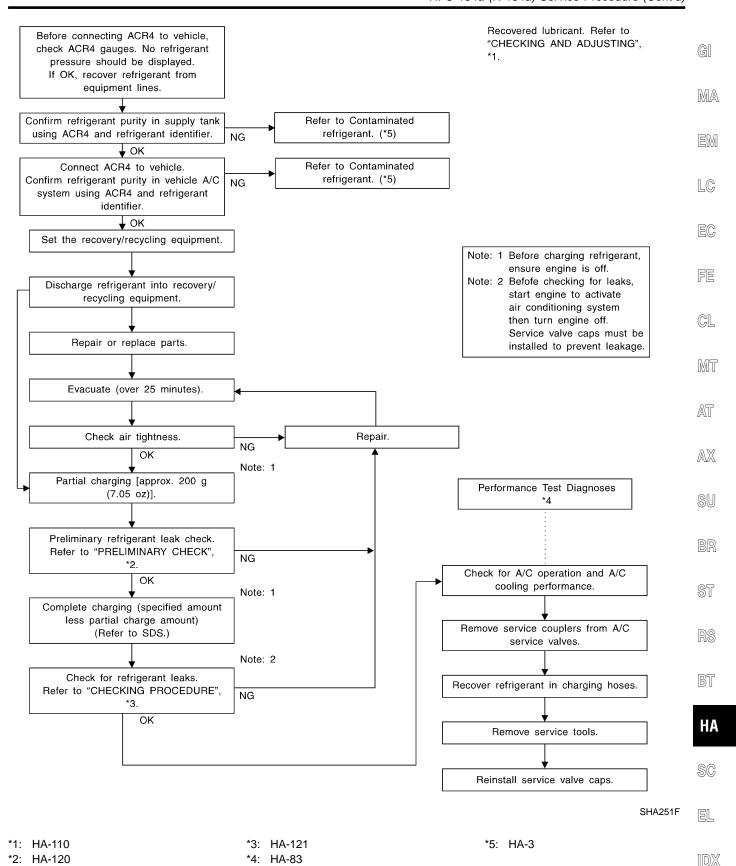

NFHA0228 NFHA0228S01

Discharging Refrigerant


......

WARNING:

Avoid breathing A/C refrigerant and lubricant vapor or mist. Exposure may irritate eyes, nose and throat. Remove HFC-134a (R-134a) from A/C system using certified service equipment meeting requirements of SAE J2210 (R-134a recycling equipment) or J2209 (R-134a recovery equipment). If accidental system discharge occurs, ventilate work area before resuming service. Additional health and safety information may be obtained from refrigerant and lubricant manufacturers.



Evacuating System and Charging Refrigerant

SERVICE PROCEDURE

HFC-134a (R-134a) Service Procedure (Cont'd)

Maintenance of Lubricant Quantity in Compressor

NFHA0229

The lubricant in the compressor circulates through the system with the refrigerant. Add lubricant to compressor when replacing any component or after a large gas leakage occurred. It is important to maintain the specified amount. If lubricant quantity is not maintained properly, the following malfunctions may result:

- Lack of lubricant: May lead to a seized compressor
- Excessive lubricant: Inadequate cooling (thermal exchange interference)

LUBRICANT

Name: Nissan A/C System Oil Type S

Part number: KLH00-PAGS0

CHECKING AND ADJUSTING

NFHA0229S02

NFHA0229S01

Adjust the lubricant quantity according to the test group shown below.

1	CHECK LUBRICANT RETURN OPERATION			
 A/C 	Can lubricant return operation be performed? • A/C system works properly. • There is no evidence of a large amount of lubricant leakage.			
	Yes or No			
Yes	Yes ▶ GO TO 2.			
No	•	GO TO 3.		

2 PERFORM LUBRICANT RETURN OPERATION, PROCEEDING AS FOLLOWS:

1. Start engine, and set the following conditions:

Test condition

Engine speed: Idling to 1,200 rpm

A/C or AUTO switch: ON Blower speed: Max. position

Temp. control: Optional [Set so that intake air temperature is 25 to 30°C (77 to 86°F).]

2. Next item is for V-6 compressor. Connect the manifold gauge, and check that the high pressure side pressure is 588 kPa (6 kg/cm², 85 psi) or higher.

If less than the reference level, attach a cover to the front face of the condenser to raise the pressure.

- 3. Perform lubricant return operation for about 10 minutes.
- 4. Stop engine.

CAUTION:

If excessive lubricant leakage is noted, do not perform the lubricant return operation.

OK ►	GO TO 3.

3	3 CHECK COMPRESSOR		
Should the compressor be replaced?			
	Yes or No		
Yes	Yes Go to "Lubricant Adjustment Procedure for Compressor Replacement", (HA-111).		
No	No ▶ GO TO 4.		

SERVICE PROCEDURE

Maintenance of Lubricant Quantity in Compressor (Cont'd)

4	CHECK ANY PART		
	re any part to be replaced? ant leakage.)	(Evaporator, condenser, liquid tank or in case there is evidence of a large amount of	G
		Yes or No	
Yes	Yes		
No	•	Carry out the A/C performance test.	E

Lubricant Adjusting Procedure for Components Replacement Except Compressor

After replacing any of the following major components, add the correct amount of lubricant to the system. Amount of lubricant to be added

Part raplaced	Lubricant to be added to system	Remarks	
Part replaced	Amount of lubricant mℓ (US fl oz, Imp fl oz)	romano	
Evaporator	75 (2.5, 2.6)	_	
Condenser	75 (2.5, 2.6)	_	
Liquid tank	5 (0.2, 0.2)	Add if compressor is not replaced. *1	
In case of refrigerant	30 (1.0, 1.1)	Large leak	
leak	_	Small leak *2	

^{*1:} If compressor is replaced, addition of lubricant is included in the table.

Lubricant Adjusting Procedure for Compressor Replacement

- 1. Before connecting ACR4 to vehicle, check ACR4 gauges. No refrigerant pressure should be displayed. If NG, recover refrigerant from equipment lines.
- 2. Connect ACR4 to vehicle. Confirm refrigerant purity in supply tank using ACR4 and refrigerant identifier. If NG, refer to "CONTAMINATED REFRIGERANT", HA-3.
- Confirm refrigerant purity in vehicle A/C system using ACR4 and refrigerant identifier. If NG, refer to "CONTAMINATED REFRIGERANT", HA-3.
- Discharge refrigerant into the refrigerant recovery/recycling equipment. Measure lubricant discharged into the recovery/ recycling equipment.
- Remove the drain plug of the "old" (removed) compressor. Drain the lubricant into a graduated container and record the amount of drained lubricant.
- Remove the drain plug and drain the lubricant from the "new" compressor into a separate, clean container.
- Measure an amount of new lubricant installed equal to amount drained from "old" compressor. Add this lubricant to "new" compressor through the suction port opening.
- 8. Measure an amount of new lubricant equal to the amount recovered during discharging. Add this lubricant to "new" compressor through the suction port opening.
- Torque the drain plug.

18 - 19 N·m (1.8 - 1.9 kg-m, 13 - 14 ft-lb)

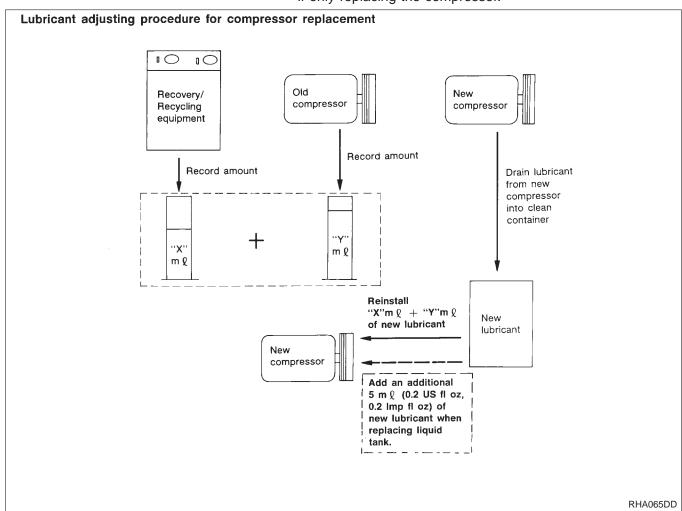
HA-111

LC

GL

MT

AT


AX

HA

SC

^{*2:} If refrigerant leak is small, no addition of lubricant is needed.

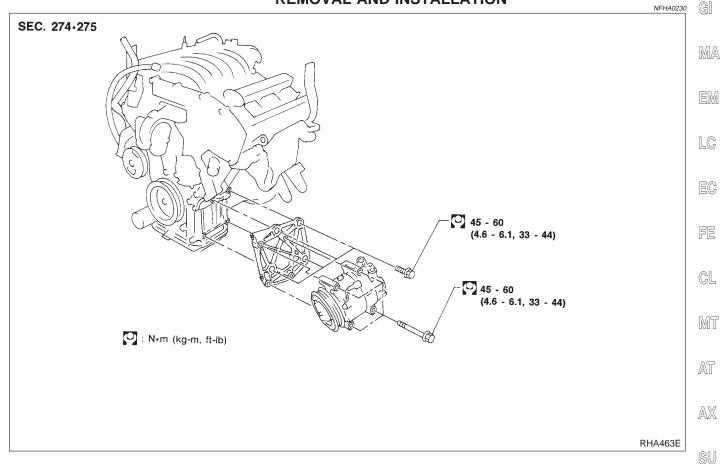
10. If the liquid tank also needs to be replaced, add an additional 5 m ℓ (0.2 US fl oz, 0.2 Imp fl oz) of lubricant at this time. Do not add this 5 m ℓ (0.2 US fl oz, 0.2 Imp fl oz) of lubricant if only replacing the compressor.

SERVICE PROCEDURE

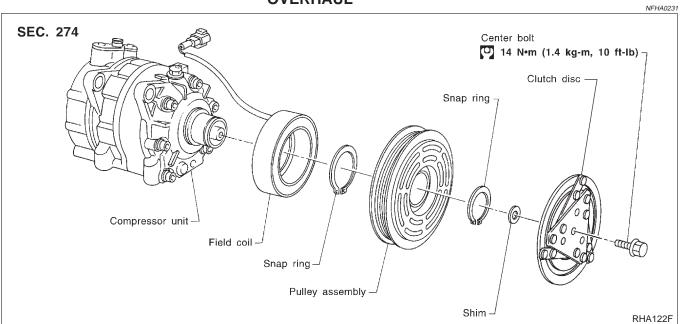
BR

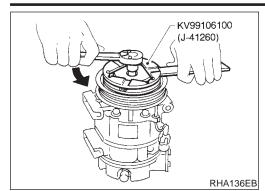
ST

RS

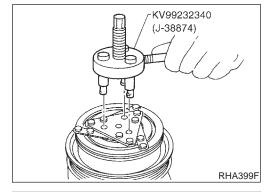

BT

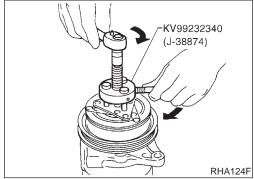
HA


SC

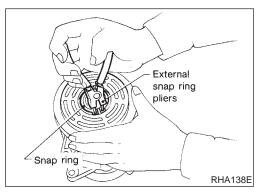

EL

Compressor REMOVAL AND INSTALLATION

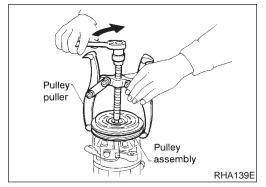

Compressor Clutch OVERHAUL



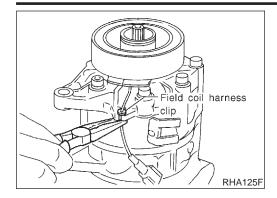
REMOVAL


When removing center bolt, hold clutch disc with clutch disc wrench.

Remove the clutch disc using the clutch disc puller. Insert the holder's three pins into the holes in the clutch disc. Rotate the holder clockwise to hook it onto the plate. Then, tighten the center bolt to remove the clutch disc. After removing the clutch disc, remove the shims from either the drive shaft or the clutch disc.


Remove the snap ring using external snap ring pliers.

Pulley removal


Position the center pulley puller on the end of the drive shaft, and remove the pulley assembly using any commercially available pulley puller.

To prevent the pulley groove from being deformed, the puller claws should be positioned onto the edge of the pulley assembly.

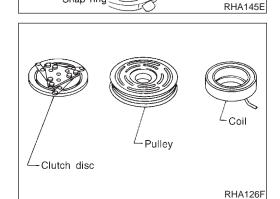
SERVICE PROCEDURE

Compressor Clutch (Cont'd)

Remove the field coil harness clip using a pair of pliers.

MA

EM


LC

Remove the snap ring using external snap ring pliers.

GL

MT

—Snap ring

INSPECTION

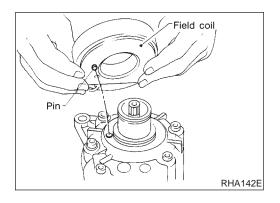
Clutch Disc

NFHA0233

AT

If the contact surface shows signs of damage due to excessive heat, replace clutch disc and pulley.

AX


Check the appearance of the pulley assembly. If the contact surface of pulley shows signs of excessive grooving, replace clutch disc and pulley. The contact surfaces of the pulley assembly should be cleaned with a suitable solvent before reinstallation.

Coil

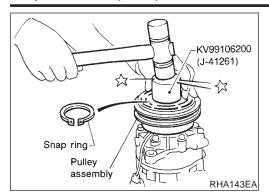
Check coil for loose connection or cracked insulation.

BT

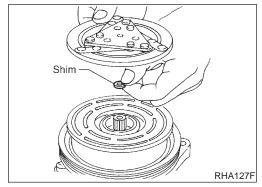
HA

INSTALLATION

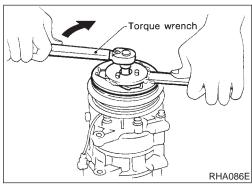
Install the field coil.


Be sure to align the coil's pin with the hole in the compressor's front head.

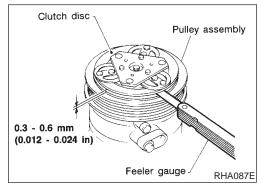
EL


SC

Install the field coil harness clip using a screwdriver.


[DX

 Install the pulley assembly using the installer and a hand press, and then install the snap ring using snap ring pliers.



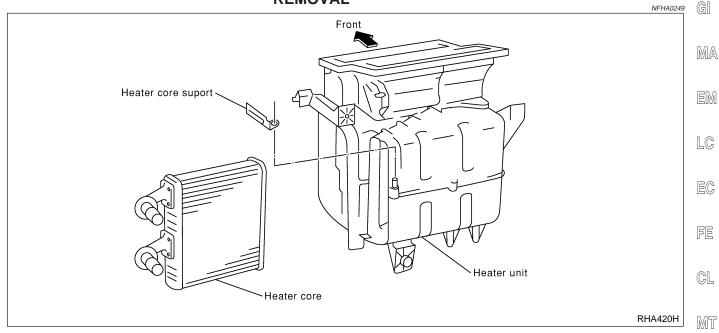
 Install the clutch disc on the drive shaft, together with the original shim(s). Press the clutch disc down by hand.

 Using the holder to prevent clutch disc rotation, tighten the bolt to 14 N·m (1.4 kg-m, 10 ft-lb) torque.

After tightening the bolt, check that the pulley rotates smoothly.

• Check clearance around the entire periphery of clutch disc.

Disc-to-pulley clearance:


0.3 - 0.6 mm (0.012 - 0.024 in)

If the specified clearance is not obtained, replace adjusting spacer and readjust.

Break-in Operation

When replacing compressor clutch assembly, always carry out the break-in operation. This is done by engaging and disengaging the clutch about thirty times. Break-in operation raises the level of transmitted torque.

Heater Unit (Heater Core) REMOVAL

- 1. Drain the cooling system. Refer to MA-14, "Changing Engine Coolant".
- Disconnect the two heater hoses from inside the engine compartment.
- 3. Remove the Blower and cooling unit. Refer to HA-118.
- 4. Remove the steering member assembly. Refer to BT-28, "Removal and Installation".
- 5. Remove the heater unit.
- Remove the heater core.

INSTALLATION

Installation is basically the reverse order of removal.

When filling radiator with coolant, refer to MA-14, "Changing Engine Coolant".

R

NFHA0250

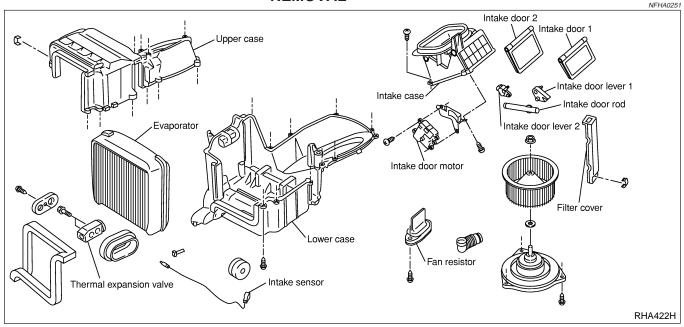
AT

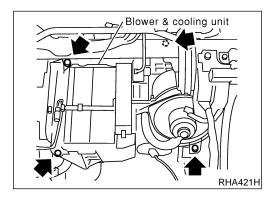
AX

SU

BR

HA


BT


SC

EL

Blower and Cooling Unit (A/C Evaporator) REMOVAL

- Discharge the A/C system. Refer to HA-108.
- Disconnect the two refrigerant lines from the engine compartment.
 - Cap the A/C lines to prevent moisture from entering the system.
- 3. Remove the glove box and mating trim. Refer to BT-28, "Removal and Installation".
- 4. Disconnect the thermal amp. connector.
- 5. Disconnect the intake sensor connector.
- 6. Disconnect the fan control amp. and blower motor connector.
- 7. Remove the blower and cooling unit.
- 8. Separate the blower and cooling unit case, and remove the evaporator.
- Remove the three bolts and then remove the motor from the blower case.

INSTALLATION

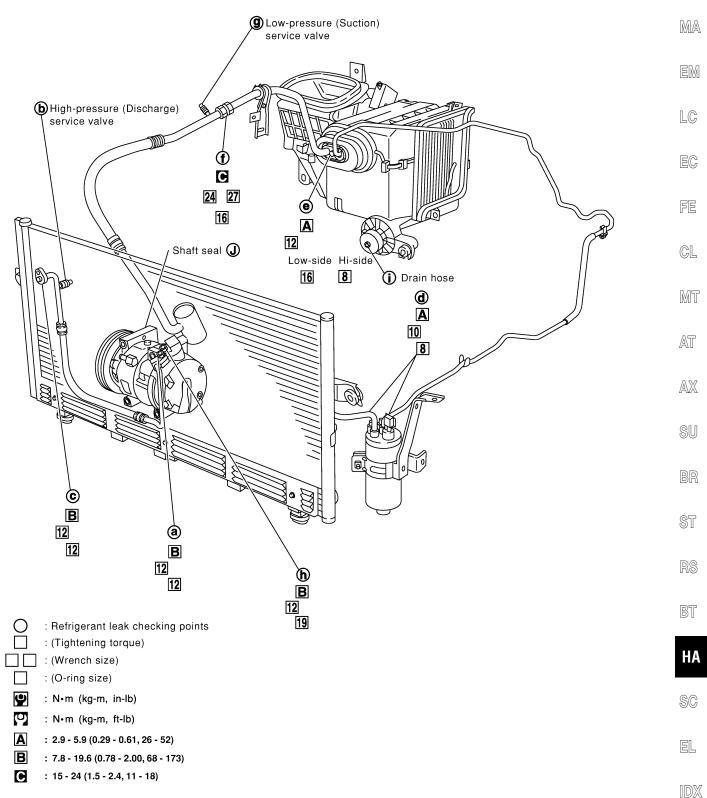
NFHA0252

Installation is basically the reverse order of removal.

Recharge the A/C system. Refer to HA-108.

SERVICE PROCEDURE

GI

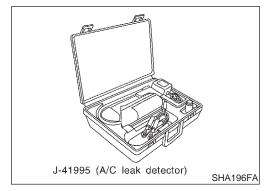

=NFHA0235

RHA423HC

Refrigerant Lines

REMOVAL AND INSTALLATION

• Refer to page HA-4 regarding "Precautions for Refrigerant Connection".

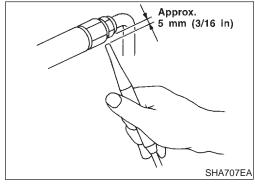


CHECKING REFRIGERANT LEAKS **Preliminary Check**

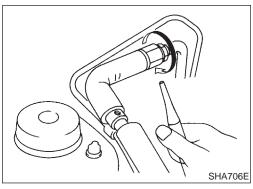
NFHA0236

NFHA0236S01

Perform a visual inspection of all refrigeration parts, fittings, hoses, and components for signs of A/C lubricant leakage, damage and corrosion. Take note of the areas with A/C lubricant leakage to allow extra time in these areas with electronic leak detector.

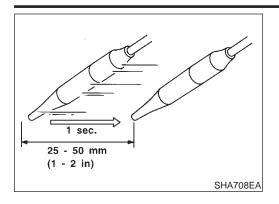


Precautions for Handling Leak Detector


When performing a refrigerant leak check, use a J-41995 A/C leak detector or equivalent. Ensure that the instrument is calibrated and set properly per the operating instructions.

The leak detector is a delicate device. In order to use the leak detector properly, read the operating instructions and perform any specified maintenance.

Other gases in the work area or substances on the A/C components, for example, anti-freeze, windshield washer fluid, solvents and lubricants, may falsely trigger the leak detector. Make sure the surfaces to be checked are clean. Clean with a dry cloth or blow off with shop air. Do not allow the sensor tip of the detector to contact with any substance. This can also cause false readings and may damage the detector.


Position probe approximately 5 mm (3/16 in) away from point to be checked.

2. When testing, circle each fitting completely with probe.

SERVICE PROCEDURE

Refrigerant Lines (Cont'd)

Move probe along component approximately 25 to 50 mm (1 to 2 in)/sec.

MA

LC

Checking Procedure

To prevent inaccurate or false readings, make sure there is no refrigerant vapor, shop chemicals, or cigarette smoke in the vicinity of the vehicle. Perform the leak test in calm area (low air/wind movement) so that the leaking refrigerant is not dispersed.

GL

- Turn engine off.
- Connect a suitable A/C manifold gauge set to the A/C service ports.

MT

Check if the A/C refrigerant pressure is at least 345 kPa (3.52 kg/cm², 50 psi) above 16°C (61°F). If less than specification, recover/evacuate and recharge the system with the specified amount of refrigerant.

AT

NOTE:

At temperatures below 16°C (61°F), leaks may not be detected since the system may not reach 345 kPa (3.52 kg/cm², 50 psi).

AX

Conduct the leak test from the high side (compressor discharge a to evaporator inlet e) to the low side (evaporator discharge e to shaft seal j). Refer to HA-119. Perform a leak check for the following areas carefully. Clean the component to be checked and move the leak detector probe completely around the connection/component.

Compressor

Check the fitting of high and low pressure hoses, relief valve and shaft seal.

Liquid tank

Check the pressure switch, tube fitting, weld seams and the fusible plug mount.

Service valves

Check all around the service valves. Ensure service valve caps are secured on the service valves (to prevent leaks).

NOTE:

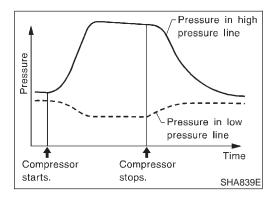
After removing A/C manifold gauge set from service valves, wipe any residue from valves to prevent any false readings by leak detector.

HA

SC

Cooling unit (Evaporator)

seconds to dissipate any refrigerant trace in the cooling unit.


Wait a minimum of 10 minutes accumulation time (refer to the manufacturer's recommended procedure for actual wait time) before inserting the leak detector probe into the drain hose. Keep the probe inserted for at least ten seconds. Use caution not to contaminate the ptobe tip with water or dirt that may be

With engine OFF, turn blower fan on "High" for at least 15

in the drain hose.

Refrigerant Lines (Cont'd)

- If a leak detector detects a leak, verify at least once by blowing compressed air into area of suspected leak, then repeat check as outlined above.
- Do not stop when one leak is found. Continue to check for additional leaks at all system components.
 If no leaks are found, perform steps 7 - 10.
- 7. Start engine.
- 8. Set the heater A/C control as follows:
- 1) A/C switch ON.
- 2) Face mode
- 3) Recirculation switch ON
- 4) Max cold temperature
- 5) Fan speed high
- 9. Run engine at 1,500 rpm for at least 2 minutes.
- 10. Turn engine off and perform leak check again following steps 4 through 6 above.

Refrigerant leaks should be checked immediately after stopping the engine. Begin with the leak detector at the compressor. The pressure on the high pressure side will gradually drop after refrigerant circulation stops and pressure on the low pressure side will gradually rise, as shown in the graph. Some leaks are more easily detected when pressure is high.

- 11. Before connecting ACR4 to vehicle, check ACR4 gauges. No refrigerant pressure should be displayed. If pressure is displayed, recover refrigerant from equipment lines and then check refrigerant purity.
- 12. Confirm refrigerant purity in supply tank using ACR4 and refrigerant identifier.
- Confirm refrigerant purity in vehicle A/C system using ACR4 and refrigerant identifier.
- 14. Discharge A/C system using approved refrigerant recovery equipment. Repair the leaking fitting or component as necessary.
- 15. Evacuate and recharge A/C system and perform the leak test to confirm no refrigerant leaks.
- 16. Conduct A/C performance test to ensure system works properly.

SERVICE PROCEDURE

Belt

TENSION ADJUSTMENT

• Refer to MA-13, "Checking Drive Belt".

NFHA0237

MA

GI

EM

LC

Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve INSPECTION

Refer to EC-505, and HA-20, "Description".

NFHA0238

FE

EC

CL

MT

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

НА

SC

EL

Auto

COMPRESSOR				
Model		CALSONIC make V-6		
Туре		V-6 variable displacement		
Displacement cm³ (cu in)/rev.	Max.	184 (11.228)		
	Min.	14.5 (0.885)		
Cylinder bore x stroke mm (in)	,	37 (1.46) x [2.3 - 28.6 (0.091 - 1.126)]		
Direction of rotation		Clockwise (viewed from drive end)		

LUBRICANT

Drive belt

NFHA0242

Poly V

Model		CALSONIC make V-6
Name		Nissan A/C System Oil Type S
Part number		KLH00-PAGS0
Consoite	Total in system	200 (6.8, 7.0)
Capacity $m\ell$ (US fl oz, Imp fl oz)	Compressor (Service part) charging amount	200 (6.8, 7.0)

REFRIGERANT

NFHA0243

Туре	HFC-134a (R-134a)
Capacity kg (lb)	0.60 - 0.70 (1.32 - 1.54)

ENGINE IDLING SPEED (WHEN A/C IS ON)

• Refer to EC-505, "Description".

BELT TENSION

• Refer to MA-13, "Checking Drive Belts".

NFHA0244

NFHA0245

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER" used along with a seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. The SRS system composition which is available to NISSAN MODEL A33 is as follows (The composition varies according to optional equipment.):

MA

- For a frontal collision
 - The Supplemental Restraint System consists of driver air bag module (located in the center of the steering wheel), front passenger air bag module (located on the instrument panel on passenger side), seat belt pre-tensioners, a diagnosis sensor unit, warning lamp, wiring harness and spiral cable.

EM

- For a side collision
 - The Supplemental Restraint System consists of front side air bag module (located in the outer side of front seat), satellite sensor, diagnosis sensor unit (one of components of air bags for a frontal collision), wiring harness, warning lamp (one of components of air bags for a frontal collision).

LG EG

Information necessary to service the system safely is included in the RS section of this Service Manual.

WARNING:

To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death
in the event of a collision which would result in air bag inflation, all maintenance should be performed by an authorized NISSAN dealer.

CL

 Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by intentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the RS section.

MT

• Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. Spiral cable and wiring harnesses covered with yellow insulation or tape either just before the harness connectors or for the complete harness are related to the SRS.

AT

Precautions for Working with HFC-134a (R-134a)

AX

WARNING:

CFC-12 (R-12) refrigerant and HFC-134a (R-134a) refrigerant are not compatible. If the refrigerants are mixed and compressor failure is likely to occur, refer to "CONTAMINATED REFRIGERANT" below. To determine the purity of HFC-134a (R-134a) in the vehicle and recovery tank, use Refrigerant Recovery/Recycling Recharging equipment (ACR4) (J-39500-NI) and Refrigerant Identifier.

DD

Use only specified lubricant for the HFC-134a (R-134a) A/C system and HFC-134a (R-134a) components. If lubricant other than that specified is used, compressor failure is likely to occur.

@T

• The specified HFC-134a (R-134a) lubricant rapidly absorbs moisture from the atmosphere. The following handling precautions must be observed:

a) When removing refrigerant components from a vehicle, immediately cap (seal) the component to minimize the entry of moisture from the atmosphere.

10

b) When installing refrigerant components to a vehicle, do not remove the caps (unseal) until just before connecting the components. Connect all refrigerant loop components as quickly as possible to minimize the entry of moisture into system.

3T

c) Only use the specified lubricant from a sealed container. Immediately reseal containers of lubricant. Without proper sealing, lubricant will become moisture saturated and should not be used.

HA

d) Avoid breathing A/C refrigerant and lubricant vapor or mist. Exposure may irritate eyes, nose and throat. Remove R-134a from the A/C system, using certified service equipment meeting requirements of SAE J2210 (R-134a recycling equipment), or J2209 (R-134a recovery equipment). If accidental system discharge occurs, ventilate work area before resuming service. Additional health and safety information may be obtained from refrigerant and lubricant manufacturers.

SC

e) Do not allow lubricant (Nissan A/C System Oil Type S) to come in contact with styrofoam parts. Damage may result.

CONTAMINATED REFRIGERANT

NFHA0061S01

If a refrigerant other than pure R-134a is identified in a vehicle, your options are:

 Explain to the customer that environmental regulations prohibit the release of contaminated refrigerant into the atmosphere. Precautions for Working with HFC-134a (R-134a) (Cont'd)

- Explain that recovery of the contaminated refrigerant could damage your service equipment and refrigerant supply.
- Suggest the customer return the vehicle to the location of previous service where the contamination may have occurred.
- If you choose to perform the repair, recover the refrigerant using only dedicated equipment and containers. Do not recover contaminated refrigerant into your existing service equipment. If your facility does not have dedicated recovery equipment, you may contact a local refrigerant product retailer for available service. This refrigerant must be disposed of in accordance with all federal and local regulations. In addition, replacement of all refrigerant system components on the vehicle is recommended.
- If the vehicle is within the warranty period, the air conditioner warranty is void. Please contact Nissan Customer Affairs for further assistance.

General Refrigerant Precautions

NFHA0062

WARNING:

- Do not release refrigerant into the air. Use approved recovery/recycling equipment to capture the refrigerant every time an air conditioning system is discharged.
- Always wear eye and hand protection (goggles and gloves) when working with any refrigerant or air conditioning system.
- Do not store or heat refrigerant containers above 52°C (125°F).
- Do not heat a refrigerant container with an open flame; if container warming is required, place the bottom of the container in a warm pail of water.
- Do not intentionally drop, puncture, or incinerate refrigerant containers.
- Keep refrigerant away from open flames: poisonous gas will be produced if refrigerant burns.
- Refrigerant will displace oxygen, therefore be certain to work in well ventilated areas to prevent suffocation.
- Do not pressure test or leak test HFC-134a (R-134a) service equipment and/or vehicle air conditioning systems with compressed air during repair. Some mixtures of air and R-134a have been shown to be combustible at elevated pressures. These mixtures, if ignited, may cause injury or property damage. Additional health and safety information may be obtained from refrigerant manufacturers.

Precautions for Refrigerant Connection

NFHA0063

A new type refrigerant connection has been introduced to all refrigerant lines except the following portion.

Expansion valve to cooling unit

FEATURES OF NEW TYPE REFRIGERANT CONNECTION

NFHA0063S0

- The O-ring has been relocated. It has also been provided with a groove for proper installation. This eliminates the chance of the O-ring being caught in, or damaged by, the mating part. The sealing direction of the O-ring is now set vertically in relation to the contacting surface of the mating part to improve sealing characteristics.
- The reaction force of the O-ring will not occur in the direction that causes the joint to pull out, thereby facilitating piping connections.

PRECAUTIONS

G[

MA

EM

LC

EC

FE

CL

MT

AT

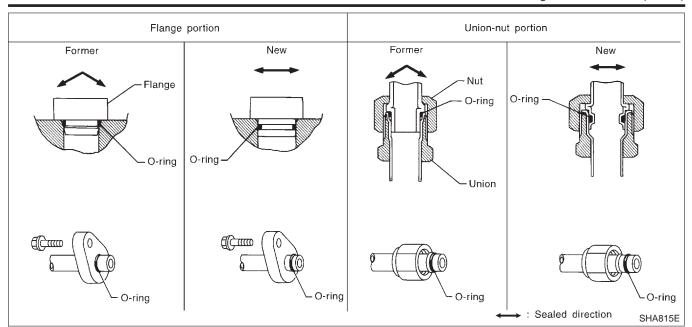
 $\mathbb{A}\mathbb{X}$

SU

BR

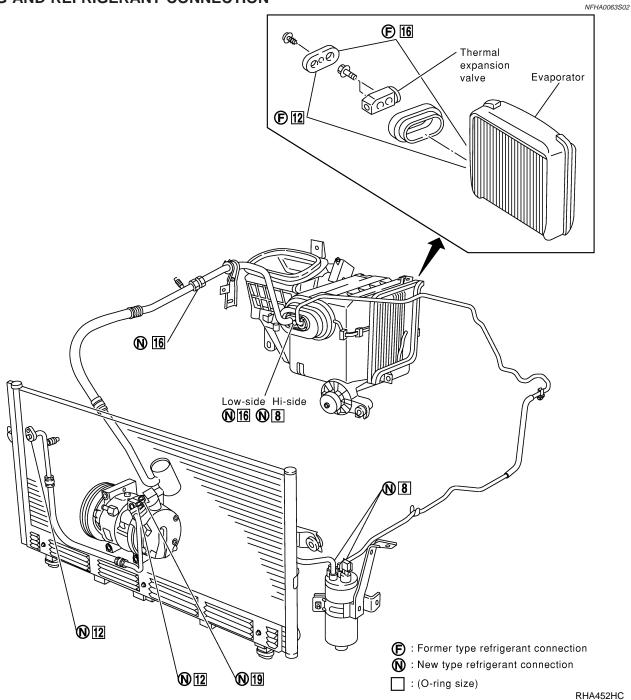
ST

RS


BT

HA

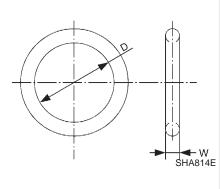
SC


EL

Precautions for Refrigerant Connection (Cont'd)

HA-127

O-RING AND REFRIGERANT CONNECTION



CAUTION:

The new and former refrigerant connections use different O-ring configurations. Do not confuse O-rings since they are not interchangeable. If a wrong O-ring is installed, refrigerant will leak at, or around, the connection.

O-Ring Part Numbers and Specifications

NFHA0063S0201

Connection type	O-ring size	Part number	D mm (in)	W mm (in)
New	8	92471 N8210	6.8 (0.268)	1.85 (0.0728)
Former	0	92470 N8200	6.07 (0.2390)	1.78 (0.0701)
New	10	92472 N8210	10.9 (0.429)	2.43 (0.0957)
Former	12	92475 71L00	11.0 (0.433)	2.4 (0.094)
New	- 16	92473 N8210	13.6 (0.535)	2.43 (0.0957)
Former		92475 72L00	14.3 (0.563)	2.3 (0.0906)
New	19	92474 N8210	16.5 (0.650)	2.43 (0.0957)
Former		92477 N8200	17.12 (0.6740)	1.78 (0.0701)

WARNING:

Make sure all refrigerant is discharged into the recycling equipment and the pressure in the system is less than atmospheric pressure. Then gradually loosen the discharge side hose fitting and remove it.

CAUTION:

When replacing or cleaning refrigerant cycle components, observe the following.

- When the compressor is removed, store it in the same position as it is when mounted on the car. Failure to do so will cause lubricant to enter the low pressure chamber.
- When connecting tubes, always use a torque wrench and a back-up wrench.
- After disconnecting tubes, immediately plug all openings to prevent entry of dirt and moisture.
- When installing an air conditioner in the vehicle, connect the pipes as the final stage of the operation. Do not remove the seal caps of pipes and other components until just before required for connection.
- Allow components stored in cool areas to warm to working area temperature before removing seal caps. This prevents condensation from forming inside A/C components.
- Thoroughly remove moisture from the refrigeration system before charging the refrigerant.
- Always replace used O-rings.
- When connecting tube, apply lubricant to circle of the O-rings shown in illustration. Be careful not to apply lubricant to threaded portion.

Lubricant name: Nissan A/C System Oil Type S

Part number: KLH00-PAGS0

- O-ring must be closely attached to dented portion of tube.
- When replacing the O-ring, be careful not to damage O-ring and tube.
- Connect tube until you hear it click, then tighten the nut or bolt by hand until snug. Make sure that the O-ring is installed to tube correctly.
- After connecting line, conduct leak test and make sure that there is no leakage from connections.
 When the gas leaking point is found, disconnect that line and replace the O-ring. Then tighten connections of seal seat to the specified torque.

GI

MA

EN/A

LC

EC

FE

CL

MT

AT

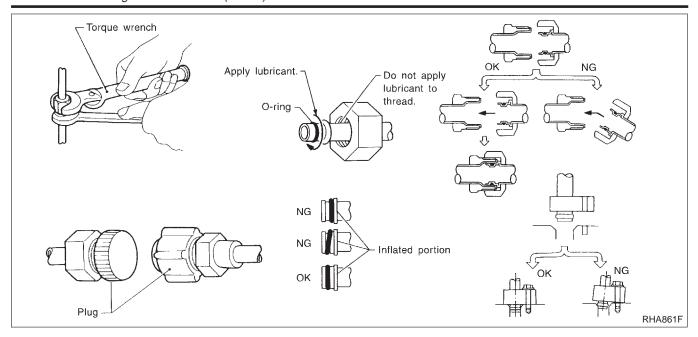
40%

SU

BR

ST

B.O.


M

HA

SC

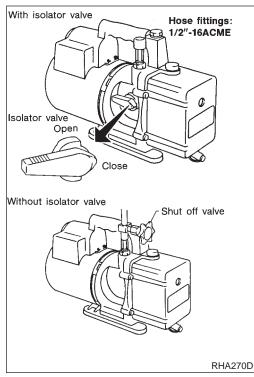
EL

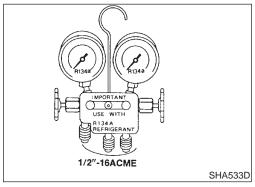
 $\mathbb{D}\mathbb{X}$

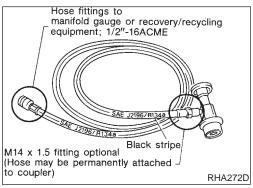
Precautions for Servicing Compressor

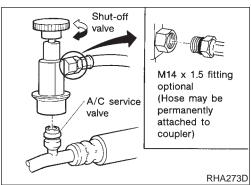
NFHA0064

- Plug all openings to prevent moisture and foreign matter from entering.
- When the compressor is removed, store it in the same position as it is when mounted on the car.
- When replacing or repairing compressor, follow "Maintenance of Lubricant Quantity in Compressor" exactly. Refer to HA-196.
- Keep friction surfaces between clutch and pulley clean. If the surface is contaminated, with lubricant, wipe it off by using a clean waste cloth moistened with thinner.
- After compressor service operation, turn the compressor shaft by hand more than five turns in both directions. This will equally distribute lubricant inside the compressor. After the compressor is installed, let the engine idle and operate the compressor for one hour.
- After replacing the compressor magnet clutch, apply voltage to the new one and check for normal operation.


Precautions for Service Equipment RECOVERY/RECYCLING EQUIPMENT


NFHA0065


Follow the manufacturer's instructions for machine operation and machine maintenance. Never introduce any refrigerant other than that specified into the machine.


ELECTRONIC LEAK DETECTOR

Follow the manufacture's instructions for tester operation and tester maintenance.

VACUUM PUMP

The lubricant contained inside the vacuum pump is not compatible with the specified lubricant for HFC-134a (R-134a) A/C systems. The vent side of the vacuum pump is exposed to atmospheric pressure. So the vacuum pump lubricant may migrate out of the pump into the service hose. This is possible when the pump is switched off after evacuation (vacuuming) and hose is connected to it.

To prevent this migration, use a manual valve situated near the hose-to-pump connection, as follows.

- Usually vacuum pumps have a manual isolator valve as part of the pump. Close this valve to isolate the service hose from the pump.
- For pumps without an isolator, use a hose equipped with a manual shut-off valve near the pump end. Close the valve to isolate the hose from the pump.
- If the hose has an automatic shut off valve, disconnect the hose from the pump: as long as the hose is connected, the valve is open and lubricating oil may migrate.

Some one-way valves open when vacuum is applied and close under a no vacuum condition. Such valves may restrict the pump's ability to pull a deep vacuum and are not recommended.

MANIFOLD GAUGE SET

Be certain that the gauge face indicates R-134a or 134a. Make sure the gauge set has 1/2"-16 ACME threaded connections for service hoses. Confirm the set has been used only with refrigerant HFC-134a (R-134a) along with specified lubricant.

SERVICE HOSES

Be certain that the service hoses display the markings described (colored hose with black stripe). All hoses must include positive shut off devices (either manual or automatic) near the end of the hoses opposite the manifold gauge.

SERVICE COUPLERS

Never attempt to connect HFC-134a (R-134a) service couplers to an CFC-12 (R-12) A/C system. The HFC-134a (R-134a) couplers will not properly connect to the CFC-12 (R-12) system. However, if an improper connection is attempted, discharging and contamination may occur.

Shut-off valve rotation	A/C service valve
Clockwise	Open
Counterclockwise	Close

MA

EM

LG

a EC

GL

MT

205024

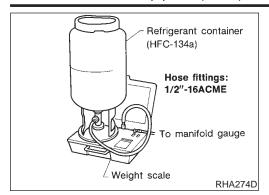
AT

AX

BR

ST

RS


RT

HA

@@

SC

EL

REFRIGERANT WEIGHT SCALE

Verify that no refrigerant other than HFC-134a (R-134a) and specified lubricants have been used with the scale. If the scale controls refrigerant flow electronically, the hose fitting must be 1/2"-16 ACME.

CALIBRATING ACR4 WEIGHT SCALE

NFHA0065S09

Calibrate the scale every three months.

To calibrate the weight scale on the ACR4 (J-39500-INF):

- 1. Press **Shift/Reset** and **Enter** at the same time.
- 2. Press 8787. "A1" will be displayed.
- 3. Remove all weight from the scale.
- Press 0, then press Enter. "0.00" will be displayed and change to "A2".
- 5. Place a known weight (dumbbell or similar weight), between 4.5 and 8.6 kg (10 and 19 lb) on the center of the weight scale.
- 6. Enter the known weight using four digits. (Example 10 lb = 10.00, 10.5 lb = 10.50)
- 7. Press **Enter** the display returns to the vacuum mode.
- 8. Press Shift/Reset and Enter at the same time.
- 9. Press 6 the known weight on the scale is displayed.
- 10. Remove the known weight from the scale. "0.00" will be displayed.
- 11. Press **Shift/Reset** to return the ACR4 to the program mode.

CHARGING CYLINDER

NFHA0065S0

Using a charging cylinder is not recommended. Refrigerant may be vented into air from cylinder's top valve when filling the cylinder with refrigerant. Also, the accuracy of the cylinder is generally less than that of an electronic scale or of quality recycle/recharge equipment.

Wiring Diagrams and Trouble Diagnosis

NFHA0066

When you read wiring diagrams, refer to the following:

- GI-11, "HOW TO READ WIRING DIAGRAMS" in GI section
- EL-10, "Wiring Diagram POWER —" for power distribution circuit in EL section

When you perform trouble diagnosis, refer to the following:

- GI-36, "HOW TO FOLLOW TEST GROUP IN TROUBLE DIAG-NOSIS" in GI section
- GI-25, "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT" in GI section

PREPARATION

	Special Servic	e Tools	
The actual shapes of Ke	nt-Moore tools may differ from those of special servi	ce tools illustrated here.	GI
Tool number (Kent-Moore No.) Tool name	Description		MA
KV99106100 (J-41260) Clutch disc wrench		Removing center bolt	EM
	NT232		LC
	N1232		EG
			FE
	When replacing the magnet clutch in the above compressor,		GL
	use a clutch disc wrench with the pin side on the clutch disc to remove it.		MT
	Pin		AT
	Clutch disc wrench		$\mathbb{A}\mathbb{X}$
KV99232340 (J-38874) or		Removing clutch disc	SU
KV992T0001 (—) Clutch disc puller			BR
	NT376		ST
KV99106200 (J-41261) Pulley installer		Installing pulley	RS
	NT235		BT

на

SC

EL

HFC-134a (R-134a) Service Tools and **Equipment**

Never mix HFC-134a refrigerant and/or its specified lubricant with CFC-12 (R-12) refrigerant and/or its lubri-

Separate and non-interchangeable service equipment must be used for handling each type of refrigerant/ lubricant.

Refrigerant container fittings, service hose fittings and service equipment fittings (equipment which handles refrigerant and/or lubricant) are different between CFC-12 (R-12) and HFC-134a (R-134a). This is to avoid mixed use of the refrigerants/lubricant.

Adapters that convert one size fitting to another must never be used: refrigerant/lubricant contamination will occur and compressor failure will result.

Tool number (Kent-Moore No.) Tool name	Description	
HFC-134a (R-134a) refrigerant		Container color: Light blue Container marking: HFC-134a (R-134a) Fitting size: Thread size Iarge container 1/2"-16 ACME
	NT196	
KLH00-PAGS0 (—) Nissan A/C System Oil Type S	NESAN	Type: Poly alkylene glycol oil (PAG), type S Application: HFC-134a (R-134a) swash plate (pis- ton) compressors (Nissan only) Lubricity: 40 mℓ (1.4 US fl oz, 1.4 Imp fl oz)
	NT197	
(J-39500-NI) Recovery/Recycling Recharging equipment (ACR4)		Function: Refrigerant Recovery and Recycling and Recharging
	NT195	
(J-41995) Electrical leak detector		Power supply: DC 12V (Cigarette lighter)
	AHA281A	

PREPARATION

MANUAL

HFC-134a (R-134a) Service Tools and Equipment (Cont'd)

Tool number			-
(Kent-Moore No.) Tool name	Description		_
(J-39183) Manifold gauge set (with hoses and couplers)		Identification: • The gauge face indicates R-134a. Fitting size: Thread size • 1/2"-16 ACME	•
	NT199		-
Service hoses High side hose (J-39501-72) Low side hose (J-39502-72)	 Low hose: Blue with black stripe High hose: Red with black stripe High hose: Yellow with black stripe or grewith black stripe With black stripe 	 High hose: Red with black stripe Utility hose: Yellow with black stripe or green with black stripe 	
Utility hose (J-39476-72)	NT201	Hose fitting to gauge: ■ 1/2"-16 ACME	
Service couplers High side coupler (J-39500-20) Low side coupler (J-39500-24)		 Hose fitting to service hose: M14 x 1.5 fitting is optional or permanently attached. 	_
	NT202		_
(J-39650) Refrigerant weight scale		For measuring of refrigerant Fitting size: Thread size 1/2"-16 ACME	-
	NT200		_
(J-39649) Vacuum pump (Including the isolator valve)		Capacity: • Air displacement: 4 CFM • Micron rating: 20 microns	
		 Oil capacity: 482 g (17 oz) Fitting size: Thread size 1/2"-16 ACME 	
	NT203		ſ

ЦΛ

HFC-134a (R-134a) Service Tools and Equipment (Cont'd)

COMMERCIAL SERVICE TOOL

NFHA0068S01

Tool name	Description	
Refrigerant identifier equipment	NT765	For checking refrigerant purity and for system contamination

Refrigeration System

REFRIGERATION CYCLE

Refrigerant Flow

The refrigerant flows in the standard pattern, that is, through the compressor, the condenser, the liquid tank, through the evaporator, and back to the compressor. The refrigerant evaporation through the evaporator coil is controlled by an externally equalized expansion valve, located inside the evaporator case.

MA

Freeze Protection

Under normal operating conditions, when the A/C is switched on, the compressor runs continuously, and the evaporator pressure, and therefore, temperature is controlled by the V-6 variable displacement compressor to prevent freeze up.

LC

Refrigerant System Protection

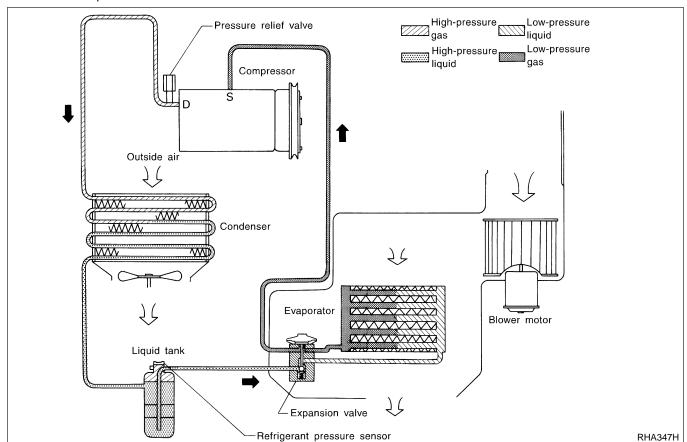
NFHA0069503

Refrigerant Pressure Sensor

NEHA0069S0301

The refrigerant system is protected against excessively high or low pressures by the refrigerant pressure sensor, located on the liquid tank. If the system pressure rises above, or falls below the specifications, the refrigerant pressure sensor detects the pressure inside the refrigerant line and sends the voltage signal to the ECM. ECM makes the A/C relay go OFF and stops the compressor when pressure on the high pressure side detected by refrigerant pressure sensor is over about 2,746 kPa (28 kg/cm², 398 psi) or below about 177 kPa (1.8 kg/cm², 26 psi).

GL


Pressure Relief Valve

The refrigerant system is also protected by a pressure relief valve, located in the rear head of the compressor. When the pressure of refrigerant in the system increases to an abnormal level [more than 3,727 kPa (38 kg/cm², 540 psi)], the release port on the pressure relief valve automatically opens and releases refrigerant into the atmosphere.

AT

AX

MT

ST

BT

HA

SC

EL

MANUAL

V-6 Variable Displacement Compressor

GENERAL INFORMATION

NEHADOZO

- 1. The V-6 variable compressor differs from previous units. The vent temperatures of the V-6 variable compress do not drop too far below 5°C (41°F) when:
- evaporator intake air temperature is less than 20°C (68°F)
- engine is running at speeds less than 1,500 rpm.
 - This is because the V-6 compressor provides a means of "capacity" control.
- 2. The V-6 variable compressor provides refrigerant control under varying conditions. During cold winters, it may not produce high refrigerant pressure discharge (compared to previous units) when used with air conditioning systems.
- 3. A "clanking" sound may occasionally be heard during refrigerant charge. The sound indicates that the tilt angle of the swash plate has changed and is not a problem.
- 4. For air conditioning systems with the V-6 compressor, the clutch remains engaged unless: the system main switch, fan switch or ignition switch is turned OFF. When ambient (outside) temperatures are low or when the amount of refrigerant is insufficient, the clutch is disengaged to protect the compressor.
- 5. A constant range of suction pressure is maintained when engine speed is greater than a certain value. It normally ranges from 147 to 177 kPa (1.5 to 1.8 kg/cm², 21 to 26 psi) under varying conditions. In previous compressors, however, suction pressure was reduced with increases in engine speed.

MA

LC

EC

FE

GL

MT

AT

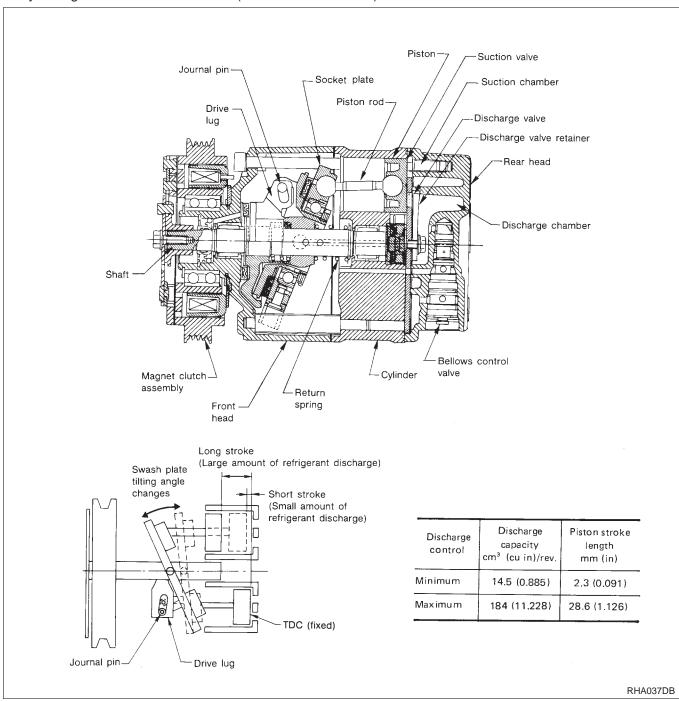
AX

ST

BT

HA

SC


EL

DESCRIPTION

General =NFHA0132

The variable compressor is basically a swash plate type that changes piston stroke in response to the required cooling capacity.

The tilt of the swash plate allows the piston's stroke to change so that refrigerant discharge can be continuously changed from 14.5 to 184 cm³ (0.885 to 11.228 cu in).

HA-139

V-6 Variable Displacement Compressor (Cont'd)

Operation

1. Operation Control Valve

=NFHA0132S02

NFHA0132S0201

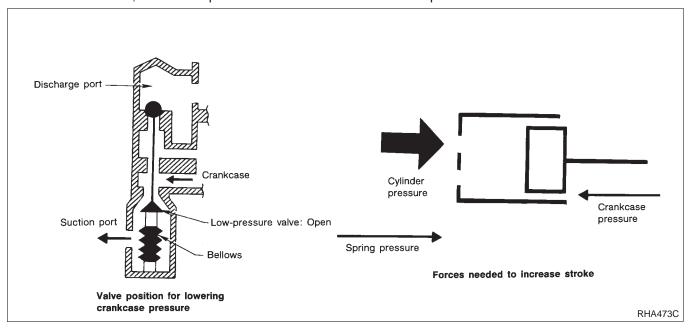
Operation control valve is located in the suction port (low-pressure) side, and opens or closes in response to changes in refrigerant suction pressure.

Operation of the valve controls the internal pressure of the crankcase.

The angle of the swash plate is controlled between the crankcase's internal pressure and the piston cylinder pressure.

2. Maximum Cooling

NFHA0132S0202


Refrigerant pressure on the low-pressure side increases with an increase in heat loads.

When this occurs, the control valve's bellows compress to open the low-pressure side valve and close the high-pressure side valve.

This causes the following pressure changes:

- the crankcase's internal pressure to equal the pressure on the low-pressure side;
- the cylinder's internal pressure to be greater than the crankcase's internal pressure.

Under this condition, the swash plate is set to the maximum stroke position.

3. Capacity Control

- Refrigerant pressure on suction side is low during high speed driving or when ambient or interior tempera-
- The bellows expands when refrigerant pressure on the suction pressure side drops below approximately 177 kPa (1.8 kg/cm², 26 psi).

MA

Since suction pressure is low, it makes the suction port close and the discharge port open. Thus, crankcase pressure becomes high as high pressure enters the crankcase.

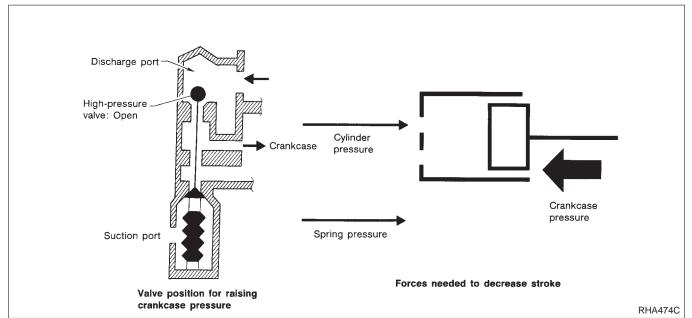
EM

The force acts around the journal pin near the swash plate, and is generated by the pressure difference before and behind the piston.

The drive lug and journal pin are located where the piston generates the highest pressure. Piston pressure is between suction pressure Ps and discharge pressure Pd, which is near suction pressure Ps. If crankcase pressure Pc rises due to capacity control, the force around the journal pin makes the swash plate angle decrease and also the piston stroke decrease. In other words, crankcase pressure increase triggers pressure difference between the piston and the crankcase. The pressure difference changes the angle of the swash plate.

EC

GL


MT

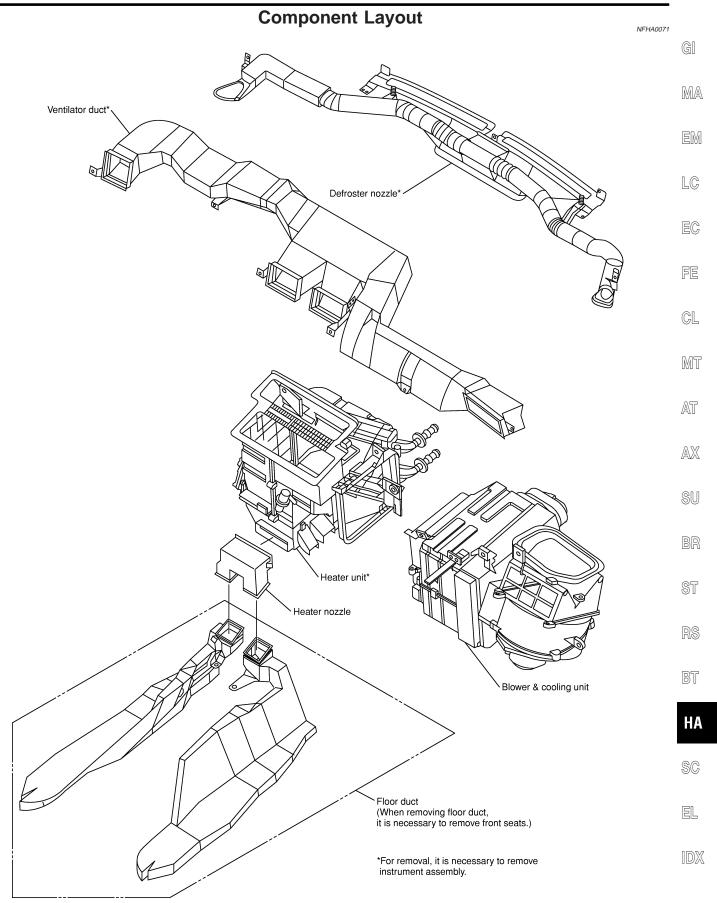
AT

AX

HA

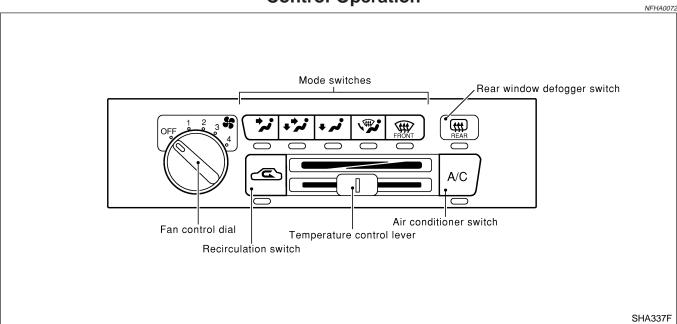
SC

V-6 Variable Displacement Compressor (Cont'd)


IACV-AAC CONTROL SYSTEM

Operation

=NFHA0133


When the air conditioner is OFF, the ECM detects the load applied to the engine, and controls the IACV-AAC valve to adjust the engine idling speed to the appropriate rpm by supplying additional air from the IACV-AAC valve.

When the air conditioner is ON (A/C relay is ON), refrigerant-pressure sensor converts refrigeration-pressure on the high pressure side into the voltage value, which is output to ECM which protects refrigeration cycle and control idle speed by the output voltage data, and additional air is supplied to the engine. If the appropriate engine speed is not reached, the IACV-AAC valve supplies the additional air required to increase the engine rpm.

RHA349H

Control Operation

FAN CONTROL DIAL

This dial turns the fan ON and OFF, and controls fan speed.

MODE SWITCHES

This switch allows control of the outlet air flow.

In "DEF" or "D/F" mode, the intake door is set to "FRESH".

The compressor turns on when the Mode switch is moved to "DEF".

TEMPERATURE CONTROL LEVER

This lever allows adjustment of the temperature of the outlet air.

RECIRCULATION (REC) SWITCH

OFF position: Outside air is drawn into the passenger compartment.

ON position: Interior air is recirculated inside the vehicle. The indicator lamp will also light.

Recirculation is canceled when DEF or D/F is selected, and resumes when another mode is chosen.

If the refrigerant pressure sensor input signal is high, recirculation is canceled, when VENT, B/L and FOOT mode is selected.

AIR CONDITIONER SWITCH

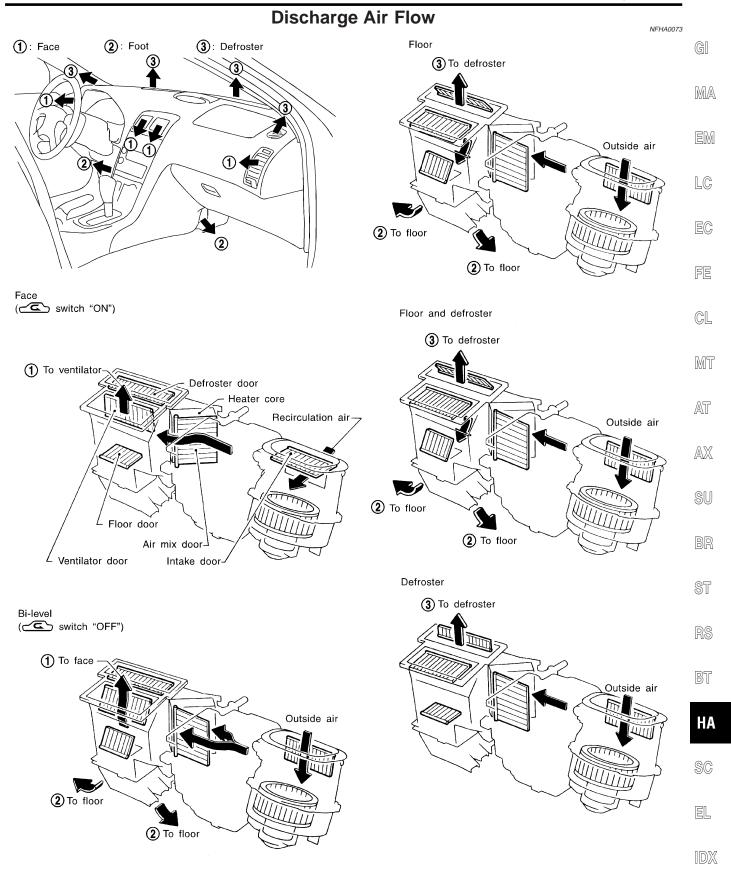
NFHA0072S05

NFHA0072S01

NFHA0072S03

NFHA0072S04

The air conditioner switch controls the A/C system. When the switch is depressed with the fan ON, the compressor will turn ON. The indicator lamp will also light.


The air conditioner cooling function operates only when the engine is running.

REAR WINDOW DEFOGGER SWITCH

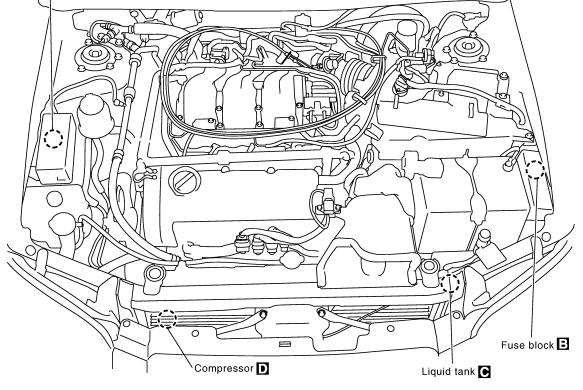
When illumination is ON, rear window is defogging.

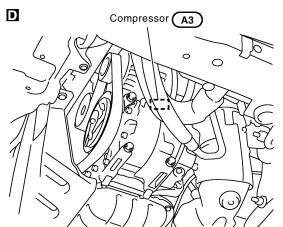
NFHA0072S06

DESCRIPTION

RHA355H

System Description SWITCHES AND THEIR CONTROL FUNCTIONS


NFHA0074


	SWITCHES AND THEIR CONTROL FUNCTIONS NFHA0074S01										
Knob/Switch		Knob/Switch position									
		A/C	*;	3	Ų,	97	(P)	æ	Air outlet	Intake air	Compressor
	A/C	0							_	_	ON*1
Mode	7		0						VENT	_	_
	ij			0					B/L	_	_
	i,				0				FOOT	_	_
						0			D/F	FRE	_
	₩						0		DEF	FRE	_
©								0	_	REC*2	_

^{*1:} Compressor is operated by ECM.

^{*2:} In DEF and D/F modes, REC switch is canceled.

Component Location NFHA0085 **ENGINE COMPARTMENT** GI NFHA0085S01 В C A/C relay (AIR CON) **E71** MA \bigcirc LC EC Blower motor Refrigerant pressure sensor (E37) A/C (AIR CON) FE Relay box-1 A GL MT AT

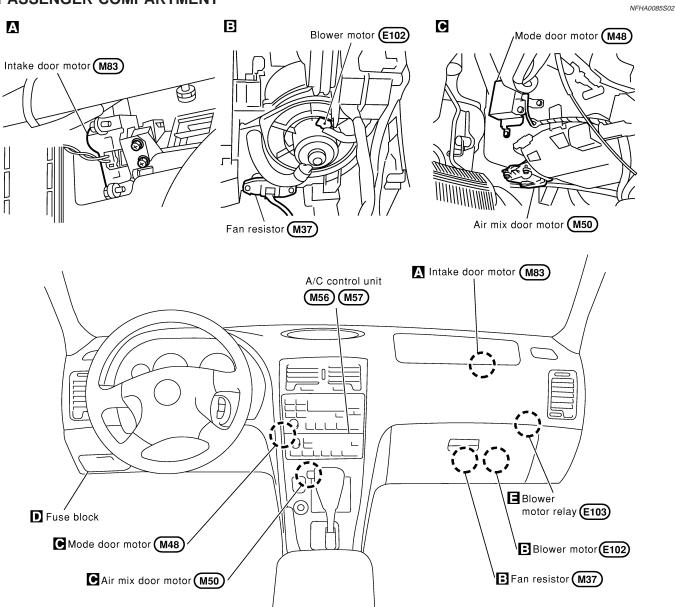
HA

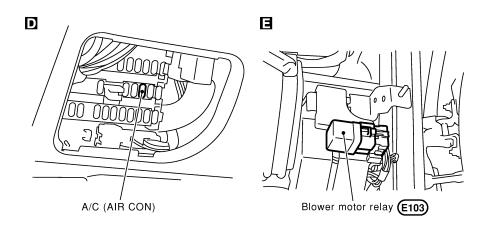
AX

SU

BR

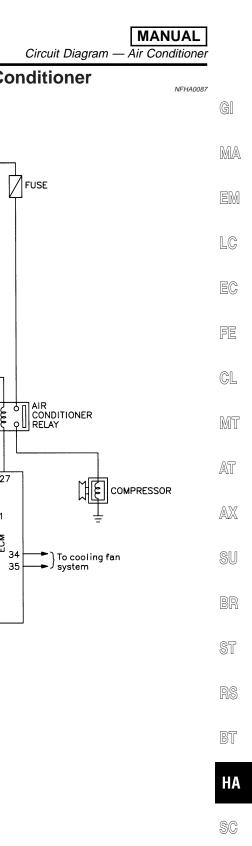
ST

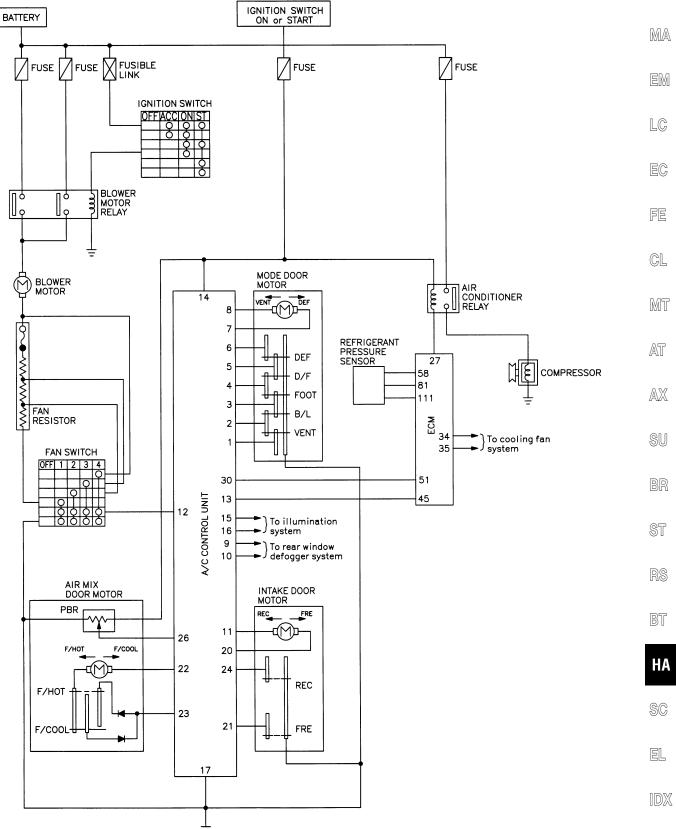

RS


BT

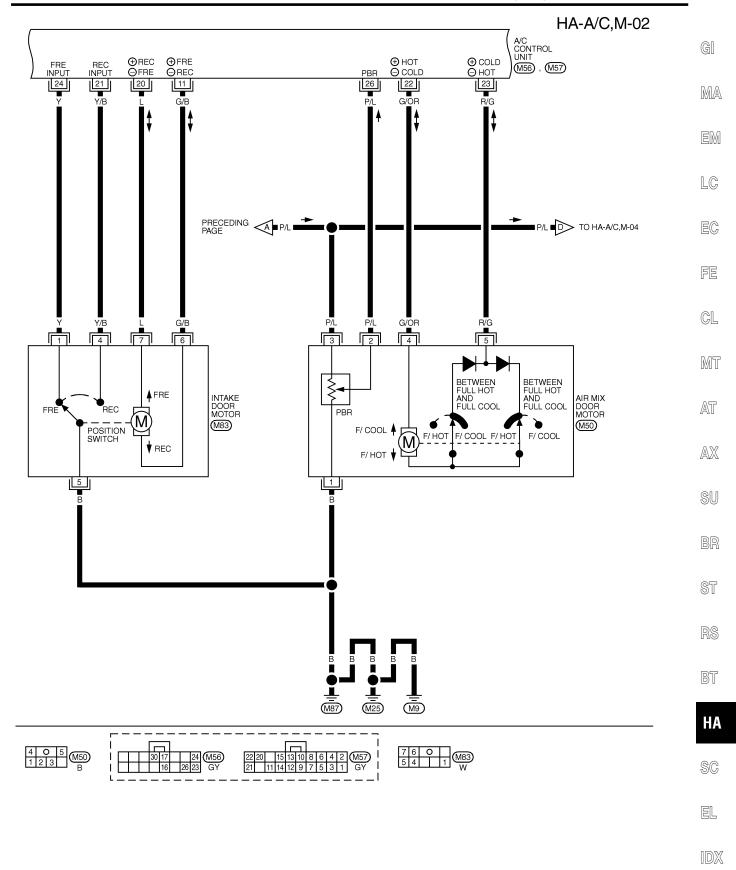
SC

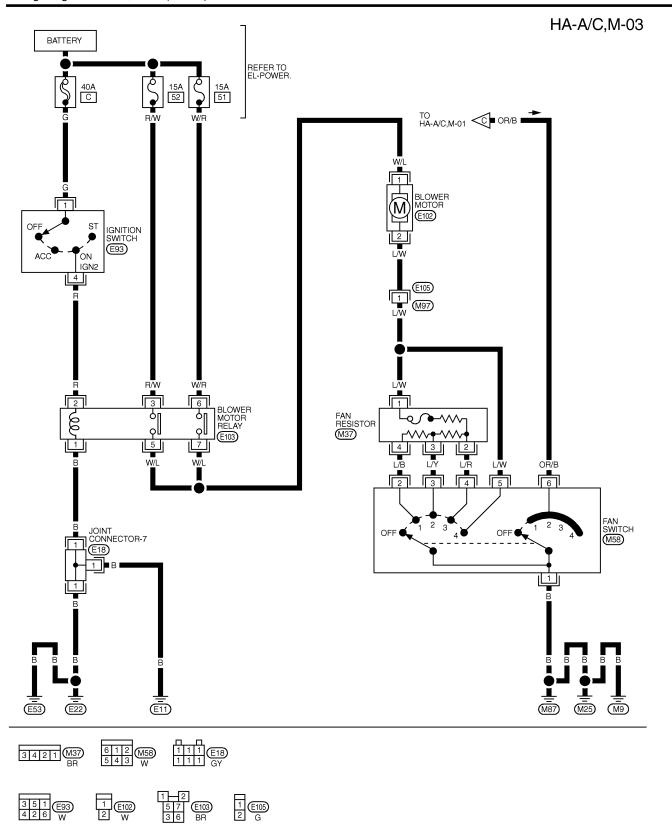
EL


PASSENGER COMPARTMENT

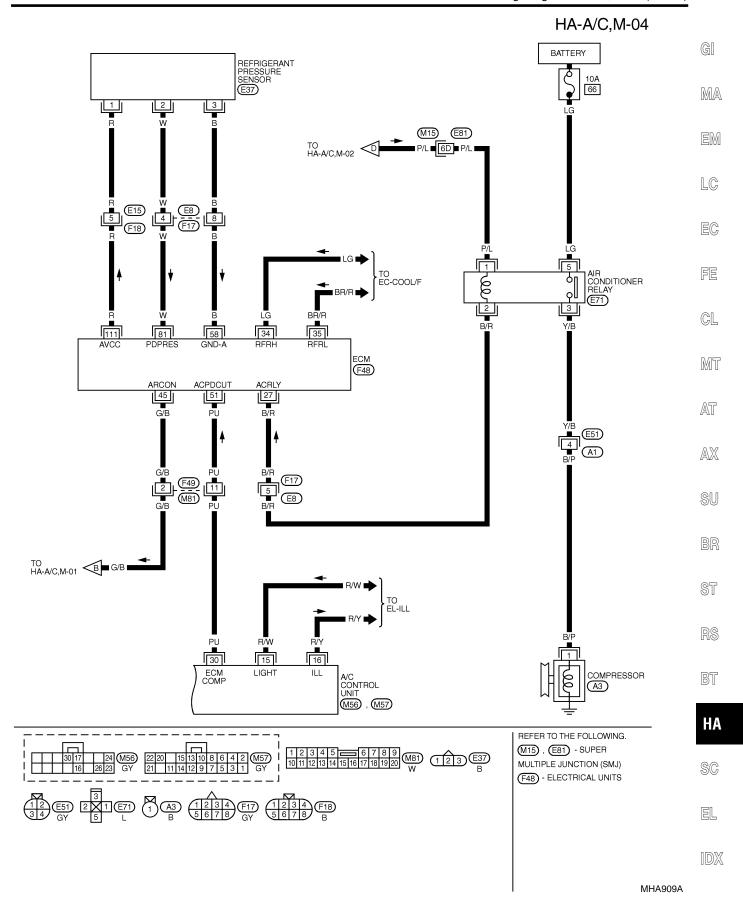



RHA456H

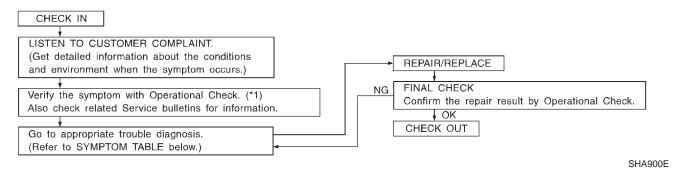

Circuit Diagram — Air Conditioner



MHA950A



MHA907A



MHA908A

How to Perform Trouble Diagnoses for Quick and Accurate Repair

WORK FLOW

*1: HA-155

SYMPTOM TABLE

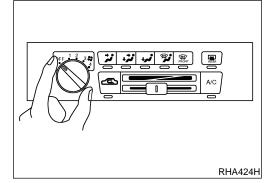
NFHA0075S02

		NFHA0075S02
Symptom	Reference page	
A/C system does not come on.	Go to Trouble Diagnosis Procedure for A/C system.	HA-157
Intake door does not change in VENT, B/L or FOOT mode.	Go to Trouble Diagnosis Procedure for Intake Door.	HA-160
Blower motor does not rotate at all.	Go to Trouble Diagnosis Procedure for Blower Motor.	HA-164
Insufficient cooling.	Go to Trouble Diagnosis Procedure for Insufficient cooling.	HA-170
Insufficient heating.	Go to Trouble Diagnosis Procedure for Insufficient heating.	HA-178
Air mix door motor does not operate normally.	Go to Trouble Diagnosis Procedure for Air mix door motor.	HA-179
Mode door does not change.	Go to Trouble Diagnosis Procedure for Mode door.	HA-183
Magnet clutch does not engage when A/C switch and fan switch are ON.	Go to Trouble Diagnosis Procedure for Magnet Clutch.	HA-186
Noise	Go to Trouble Diagnosis Procedure for Noise.	HA-193

Operational Check

The purpose of the operational check is to confirm that the system operates as it should. The systems which are checked are the blower, mode (discharge air), intake air, temperature decrease, temperature increase.

CONDITIONS:


NFHA0076S01

Engine running at normal operating temperature.

EM

LC

MA

PROCEDURE:

NFHA0076S02

1. Check Blower

NFHA0076S0201

1. Turn fan control dial to 1-speed. Blower should operate on 1-speed.

Then turn fan control dial to 2-speed.

FE

Continue checking blower speed until all four speeds are checked.

GL

4. Leave blower on 4-speed.

If NG, go to trouble diagnosis procedure for blower motor (HA-164). If OK, continue with next check.

MT

2. Check Discharge Air

NEHA0076S0202

1. Press each mode switch.

AT

AX

SU

2. Confirm that discharge air comes out according to the air distribution table at left.

ST

Refer to "Discharge Air Flow" in "DESCRIPTION" (HA-145).

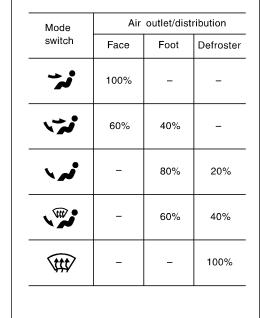
RHA425H

SHA345F

Confirm that the compressor clutch is engaged (visual inspection) and intake door position is at FRESH when the DEF () is pressed.

BT

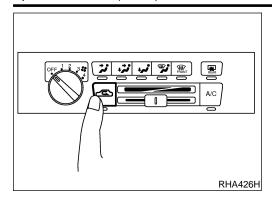
Confirm that the intake door position is at FRESH when the D/F () is pressed.

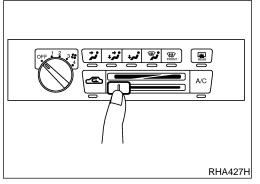

Intake door position is checked in the next step.

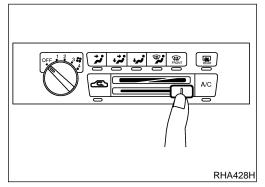
SC

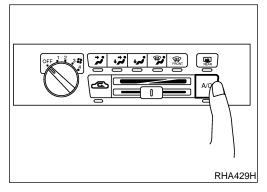
HA

If NG, go to trouble diagnosis procedure for mode door motor (HA-183). If OK, continue with next check.


EL




Discharge air flow


HA-155

NFHA0076S0203

3. Check Recirculation

 Press recirculation switch. Recirculation indicator should light.

2. Listen for intake door position change (you should hear blower sound change slightly).

NOTE:

Confirm that the RECIRCULATION (REC) switch is canceled in the DEF () and D/F () mode.

If NG, go to trouble diagnosis procedure for intake door motor (HA-160).

If OK, continue with next check.

4. Check Temperature Decrease

NFHA0076S0204

- 1. Slide temperature control lever to full cold.
- 2. Check for cold air at discharge air outlets.

If NG, go to trouble diagnosis procedure for insufficient cooling motor (HA-170).

If OK, continue with next check.

5. Check Temperature Increase

NEHA0076S0205

- 1. Slide temperature control lever to full hot.
- 2. Check for hot air at discharge air outlets.

If NG, go to trouble diagnosis procedure for insufficient heating motor (HA-178).

If OK, continue with next check.

6. Check Air Conditioner Switch

NFHA0076S020

Turn fan control switch to the desired (1 to 4-speed) position and push the air conditioner switch to turn ON the air conditioner.

The indicator light should come on when air conditioner is ON. If NG, go to trouble diagnosis procedure for A/C system (HA-157). If OK, continue with next check.

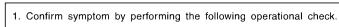
If all operational check are OK (symptom can not be duplicated), go to "Incident Simulation Tests" (GI-26) and perform tests as outlined to simulate driving conditions environment. If symptom appears, refer to "Symptom Table" (HA-154) and perform applicable trouble diagnosis procedures.

A/C System

TROUBLE DIAGNOSIS PROCEDURE FOR A/C SYSTEM Symptom:

GI =NFHA0253

MA

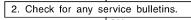

LC

EC

FE

INSPECTION FLOW

A/C system does not come on.


🙊 نوا نرد نزد

OPERATIONAL CHECK

Confirm that the system operate normally.

If OK (symptom cannot be duplicated), perform complete operational check (*2).

If NG (symptom is confirmed), continue with STEP-2 following.

3. Check main power supply and ground circuit. (*1)

4. Go to A/C system circuit. (*3)

ΟK

5. Replace push control unit. ОК

INSPECTION END

GL

MT

AT

AX

SU

ST

BT

HA

SC

EL

SHA342F

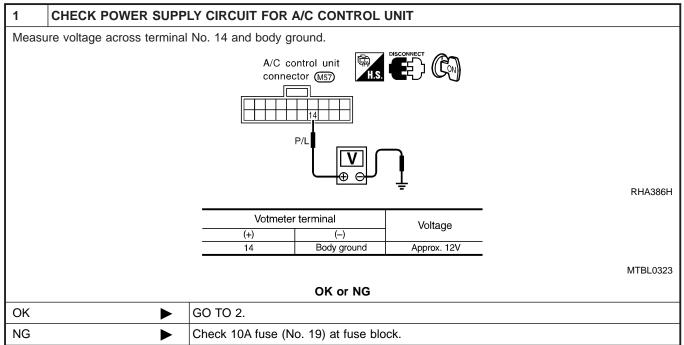
A/C System (Cont'd)

TROUBLE DIAGNOSES

MANUAL

MAIN POWER SUPPLY AND GROUND CIRCUIT CHECK

Power Supply Circuit Check


Check power supply circuit for air conditioner system. Refer to EL-10, "Wiring Diagram — POWER —".

NFHA0254S01

DIAGNOSTIC PROCEDURE SYMPTOM:

NFHA0255

A/C system does not come on.

MANUAL

A/C System (Cont'd)

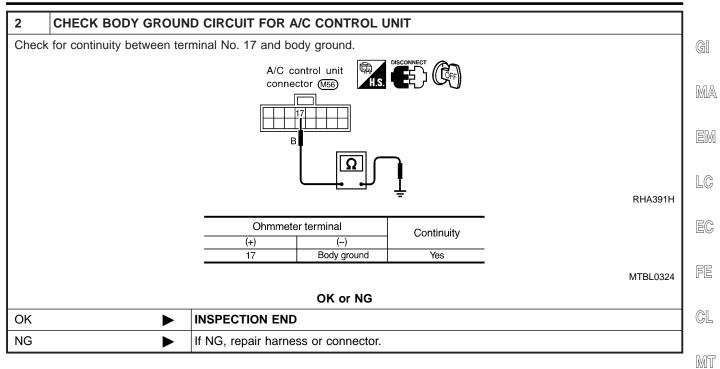
AT

AX

SU

BR

ST

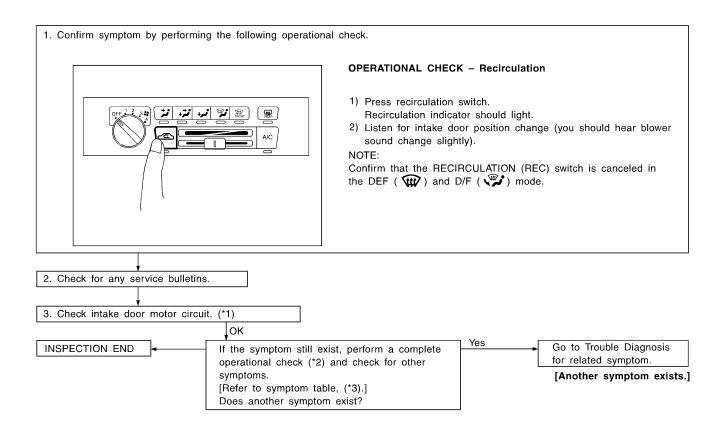

RS

BT

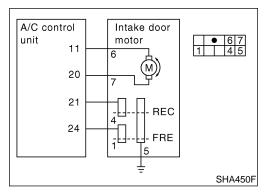
HA

SC

EL


=NFHA0135

Intake Door

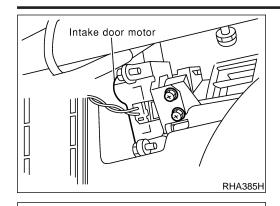

TROUBLE DIAGNOSIS PROCEDURE FOR INTAKE DOOR

Symptom:

Intake door does not change in VENT, B/L or FOOT mode.
 Inspection Flow

RHA430H

SYSTEM DESCRIPTION


Intake Door Motor

NFHA0136

The intake door motor is installed on the blower and intake unit. Using a link it opens and closes the intake door.

When RECIRCULATION switch is at REC (except DEF and D/F modes), the A/C control unit sets the intake door at the "RECIRCULATION" position.

RECIRCULATION switch is canceled by MODE switch in DEF and D/F modes.

A/C CONTROL UNIT

Intake door motor

RHA432H

20

24

1

MA

EM

LG

DIAGNOSTIC PROCEDURE

SYMPTOM: Intake door motor does not operate normally.

EC

FE

CL

MT

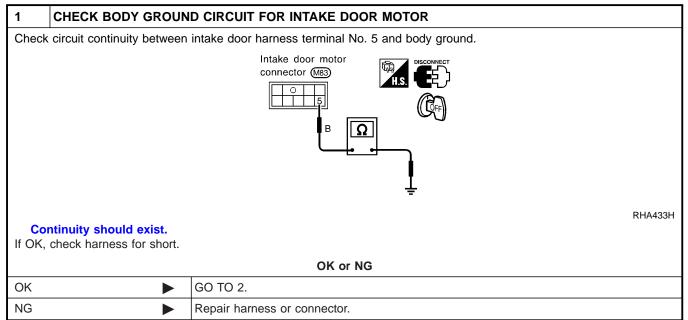
AT

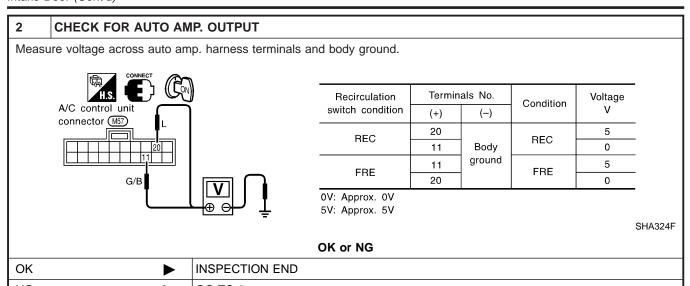
AX

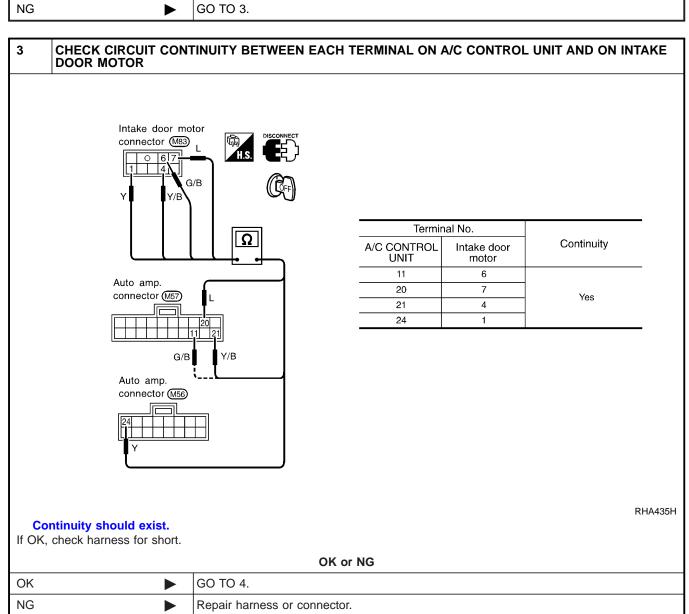
SU

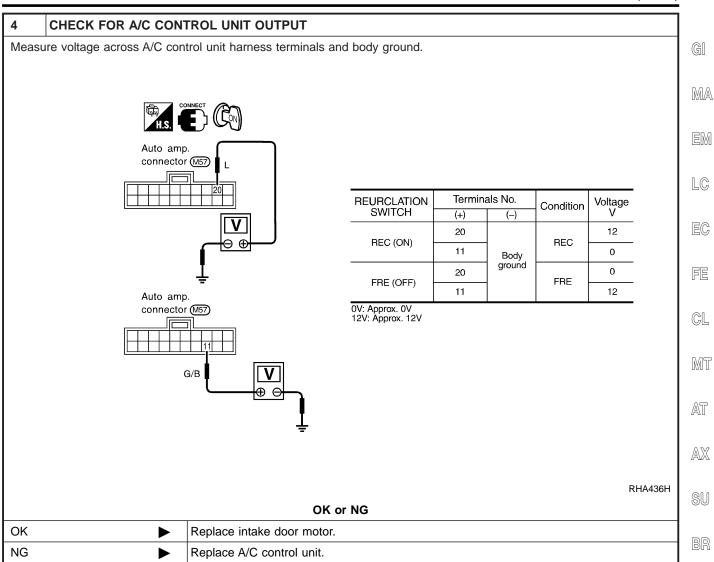
BR

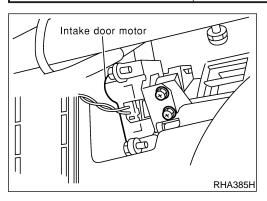
ST


RS


BT


НА


SC


El

CONTROL LINKAGE ADJUSTMENT Intake Door Motor

NFHA0093

....

NFHA0093S04

Install intake door motor on blower and intake unit.

Ensure that the intake door motor lever is fitted into the slit

o the ont

2. Connect the intake door motor harness connector.

3. Turn ignition switch to ON.

portion of intake door link.

 Check that intake door operates properly when RECIRCULA-TION switch is turned ON and OFF. HA

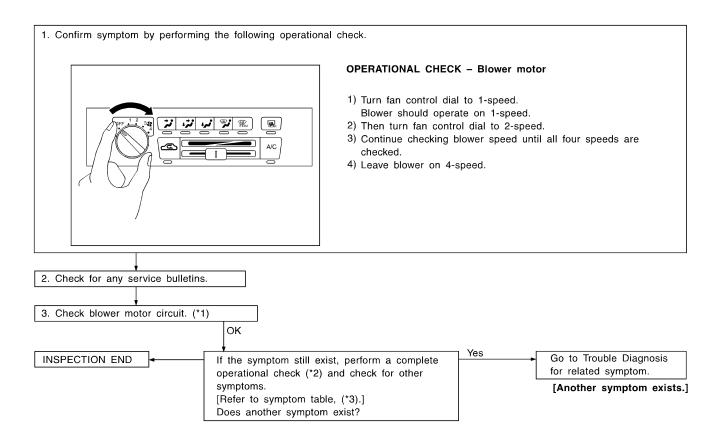
BT

SC

EL

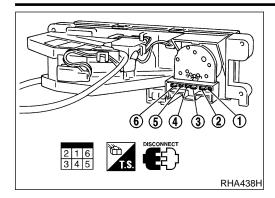
=NFHA0138

Blower Motor


TROUBLE DIAGNOSIS PROCEDURE FOR BLOWER MOTOR

Symptom:

Blower Motor


• Blower motor does not rotate at all.

Inspection Flow

RHA437H

MANUAL Blower Motor (Cont'd)

ELECTRICAL COMPONENTS INSPECTION Fan Switch

=NFHA0139

NFHA0139S01 Check continuity between terminals at each switch position.

SWITCH POSITION	Continuity between terminals
OFF	
1	2 — 1 — 6
2	3 — 1 — 6
3	4 — 1 — 6
4	5 — 1 — 6

EC

FE

CL

MT

AT

LC

GI

MA

EM

Blower Motor

Confirm smooth rotation of the blower motor.

NFHA0139S02

Ensure that there are no foreign particles inside the intake unit.

(-)

1

AXSU

BR

ST

Blower Resistor

(+) 3

4

2

Check resistance between terminals.

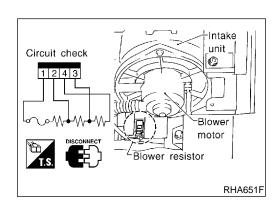
Terminal No.

Resistance

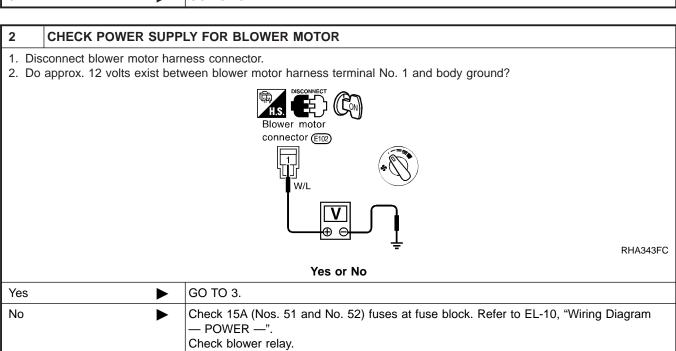
Approx. 0.9 - 1.1Ω

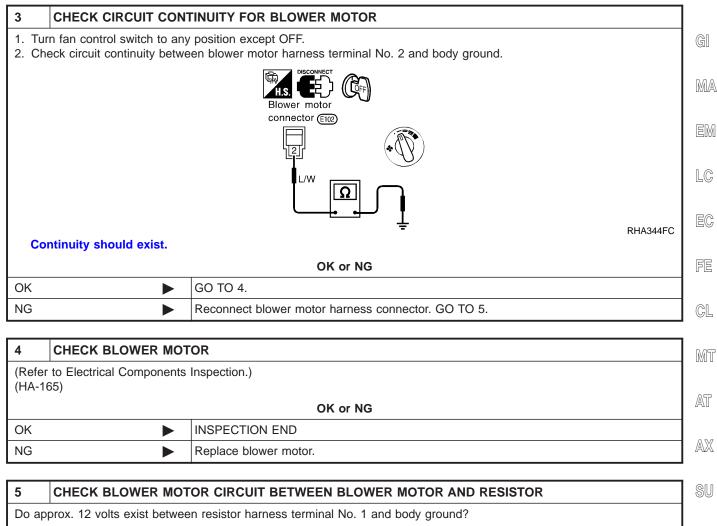
Approx. 2.75 - 2.95Ω

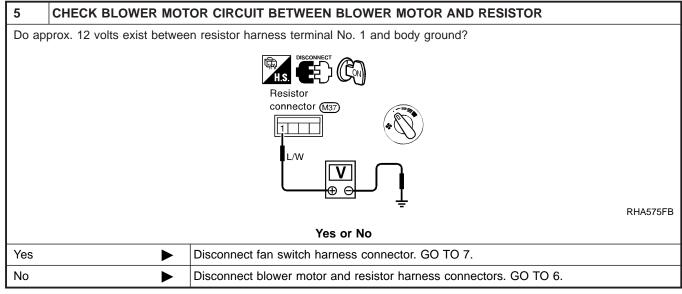
Approx. 0.3 - 0.5Ω



Ī	Α	

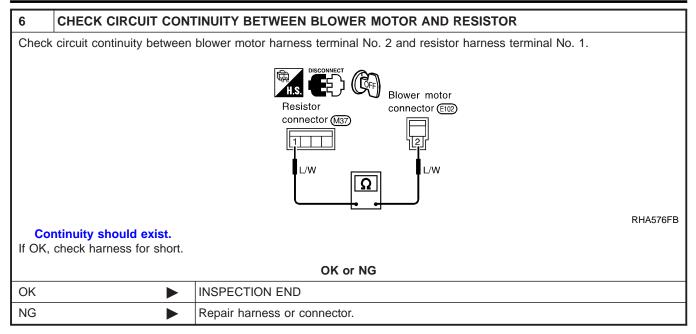

DIAGNOSTIC PROCEDURE SYMPTOM:

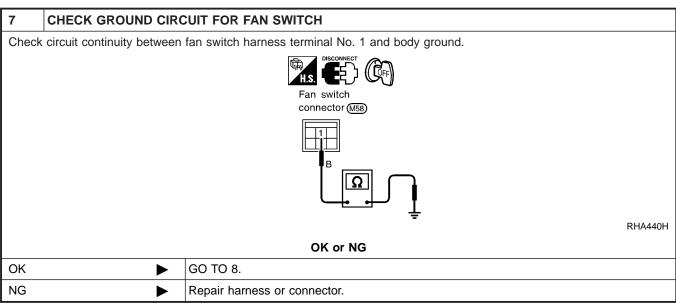

=NFHA0089


• Blower motor does not rotate.

Test group No.	INCIDENT
1	Fan fails to rotate.
2	Fan does not rotate at 1-speed.
3	Fan does not rotate at 2-speed.
4	Fan does not rotate at 3-speed.
5	Fan does not rotate at 4-speed.

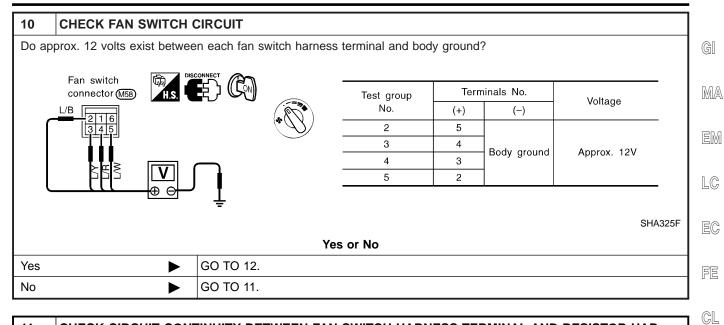
1	DIAGNOSTIC PROCEDURE					
	Check if blower motor rotates properly at each fan speed. Conduct checks as per table at above.					
1	>	GO TO 2.				
2, 3, 4	•	GO TO 8.				
5	•	GO TO 10.				

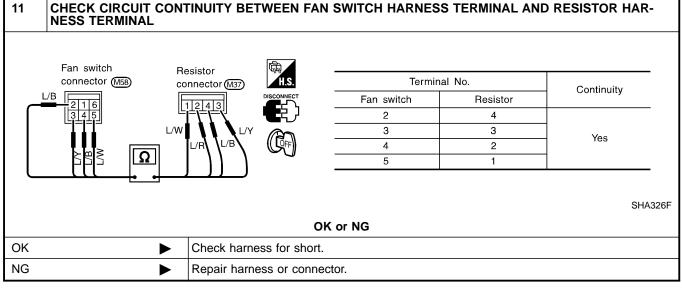



ST

BT

SC


[DX



8	CHECK RESISTOR AFTER DISCONNECTING IT						
	(Refer to Electrical Components Inspection.) (HA-165)						
	OK or NG						
OK	>	GO TO 9.					
NG	>	Replace resistor.					

9	CHECK RESISTOR HARNESS CONNECTOR					
Recor	Reconnect resistor harness connector.					
	OK or NG					
1	>	GO TO 12.				
2, 3, 4	4	GO TO 10.				

12	12 CHECK FAN SWITCH AFTER DISCONNECTING IT						
•	(Refer to Electrical Components Inspection.) (HA-165)						
		OK or NG					
OK	>	INSPECTION END					
NG	>	Replace fan switch.					

HA

BT

MT

AT

AX

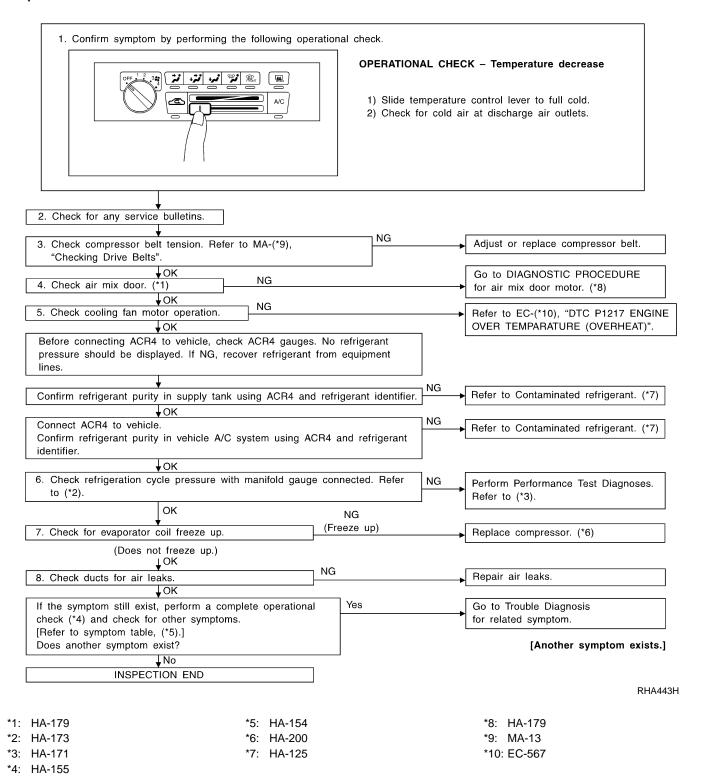
SU

ST

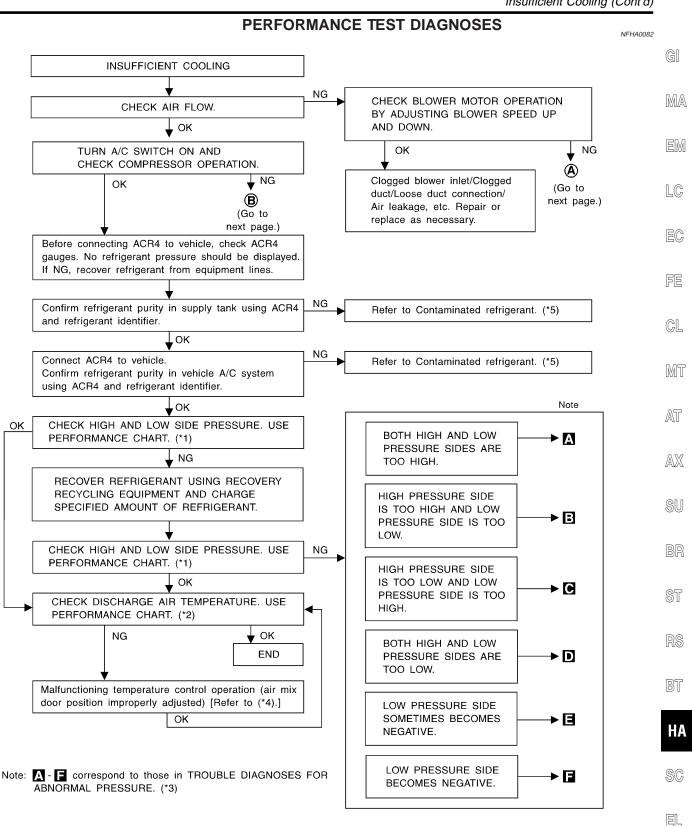
SC

EL

=NFHA0150

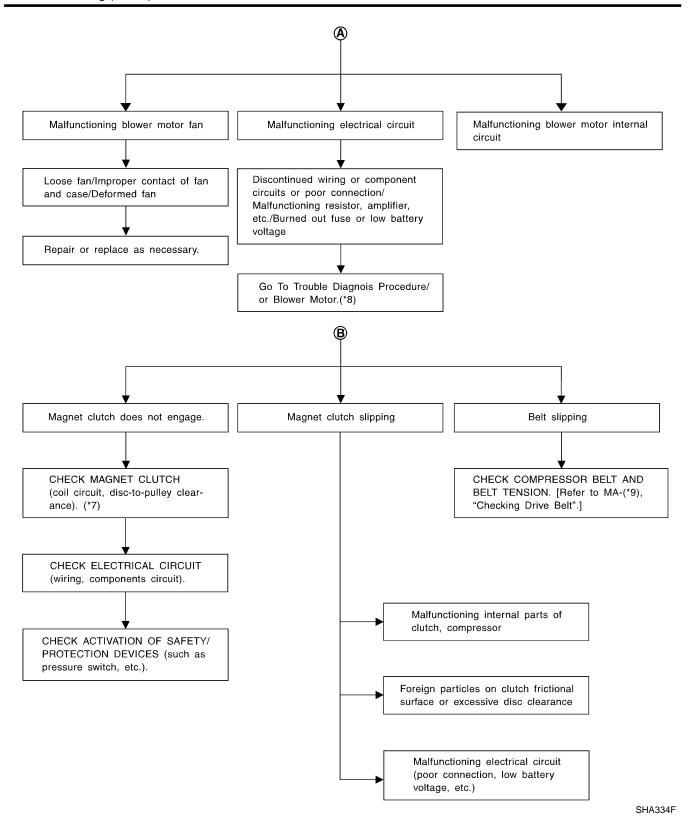

Insufficient Cooling

TROUBLE DIAGNOSIS PROCEDURE FOR INSUFFICIENT COOLING


Symptom:

Insufficient Cooling.

Inspection Flow


Insufficient Cooling (Cont'd)

SHA333F

*1: HA-173 *2: HA-173 *3: HA-174 *4: HA-179

*5: HA-125

MANUAL
Insufficient Cooling (Cont'd)

ERFORMANCE TE est Condition esting must be perfor				=NFHA0083 NFHA0083S01	
Vehicle location		in the shad	le (in a well-ventilated place)		
Doors	Closed				
Door windows	Open				
Hood	Open	·			
TEMP.	Max. COLI)			
Discharge Air	Face Vent				
REC switch	(Re	ecirculation)	set		
FAN speed	High speed	t			
Engine speed	Idle speed				
Operate the air conditioning	ng system for 10 minutes I	pefore takin	g measurements.		
Test Reading Recirculating-to-disc	harge Air Temperati	ıre Table		NFHA0083S02	
			· 	NFHA0083S0201	
Relative humidity	ting air) at blower assemble Air tempera	-	Discharge air temperature at center ventilator		
%	°C (°F)	ture	°C (°F)		
	15 (59)		3.5 - 5.4 (38 - 42)		
	20 (68)		6.6	- 8.9 (44 - 48)	
50 - 60	25 (77)		9.5 - 12.6 (49 - 55)		
	30 (86)		13.4 - 16.5 (56 - 62)		
	35 (95)		17.6 - 21.3 (64 - 70)		
	15 (59)		5.4	- 7.1 (42 - 45)	
	20 (68)		8.9 - 11.0 (48 - 52) 12.6 - 15.4 (55 - 60)		
60 - 70	25 (77)				
	30 (86)		16.5 - 20.0 (62 - 68)		
	35 (95)		21.3 - 24.8 (70 - 77)		
Ambient Air Tempera	ture-to-operating P	essure 1	Table	NFHA0083\$0202	
Ambi	ent air		(5		
Relative humidity %	Air temperature °C (°F)	High-p	oressure (Discharge side) kPa (kg/cm², psi)	Low-pressure (Suction side) kPa (kg/cm², psi)	
	15 (59)		539 - 657 (5.5 - 6.7, 78 - 95)	177 - 216 (1.8 - 2.2, 26 - 31)	
	20 (68)		677 - 824 (6.9 - 8.4, 98 - 119)	167 - 206 (1.7 - 2.1, 24 - 30)	
50 - 70	25 (77)	3)	843 - 1,030 3.6 - 10.5, 122 - 149)	177 - 226 (1.8 - 2.3, 26 - 33)	
	30 (86)	(1	1,030 - 1,275 0.5 - 13.0, 149 - 185)	216 - 255 (2.2 - 2.6, 31 - 37)	
	i	1		1	

35 (95)

1,245 - 1,520

(12.7 - 15.5, 181 - 220)

265 - 324

(2.7 - 3.3, 38 - 47)

TROUBLE DIAGNOSES FOR ABNORMAL PRESSURE

IFHANN84

Whenever system's high and/or low side pressure is abnormal, diagnose using a manifold gauge. The marker above the gauge scale in the following tables indicates the standard (normal) pressure range. Since the standard (normal) pressure, however, differs from vehicle to vehicle, refer to HA-173 ("Ambient air temperature-to-operating pressure table").

Both High and Low-pressure Sides are Too High.

NFHA0084S01

Gauge indication	Refrigerant cycle	Probable cause	Corrective action
Both high and low-pressure sides are too high.	 Pressure is reduced soon after water is splashed on condenser. 	Excessive refrigerant charge in refrigeration cycle	Reduce refrigerant until specified pressure is obtained.
	Air suction by cooling fan is insufficient.	Insufficient condenser cooling performance ↓ 1. Condenser fins are clogged. 2. Improper fan rotation of cooling fan	Clean condenser. Check and repair cooling fan as necessary.
LO HI AC359A	 Low-pressure pipe is not cold. When compressor is stopped high-pressure value quickly drops by approximately 196 kPa (2 kg/cm², 28 psi). It then decreases gradually thereafter. 	Poor heat exchange in condenser (After compressor operation stops, high pressure decreases too slowly.) Air in refrigeration cycle	Evacuate repeatedly and recharge system.
	Engine tends to overheat.	Engine cooling systems mal- function.	Check and repair each engine cooling system.
	 An area of the low-pressure pipe is colder than areas near the evaporator outlet. Plates are sometimes covered with frost. 	Excessive liquid refrigerant on low-pressure side Excessive refrigerant discharge flow Expansion valve is open a little compared with the specification. Improper thermal valve installation Improper expansion valve adjustment	Replace expansion valve.

High-pressure Side is Too High and Low-pressure Side is Too Low.

NFHA0084S02

Gauge indication	Refrigerant cycle	Probable cause	Corrective action	G[
High-pressure side is too high and low-pressure side is too low.	Upper side of condenser and high-pressure side are hot, however, liquid tank is not so hot.	High-pressure tube or parts located between compressor and condenser are clogged or crushed.	 Check and repair or replace malfunctioning parts. Check lubricant for con- tamination. 	MA
				LC
				EC
AC360A				FE

High-pressure Side is Too Low and Low-pressure Side is Too High.

IFHA0084S03

4S03

Gauge indication	Refrigerant cycle	Probable cause	Corrective action	
High-pressure side is too low and low-pressure side is too high.	High and low-pressure sides become equal soon after compressor operation stops.	Compressor pressure operation is improper.	Replace compressor.	M
	compressor operation stops.	Damaged inside compressor packings		A1
				AD
	No temperature difference between high and low-pres- sure sides	Compressor pressure operation is improper.	Replace compressor.	SI
		Damaged inside compressor packings.		B
				\$1

RS

BT

HA

SC

EL

Both High- and Low-pressure Sides are Too Low.

NFHA0084S04 Gauge indication Refrigerant cycle Probable cause Corrective action Both high- and low-pressure sides There is a big temperature Compressor discharge · Replace liquid tank. are too low. difference between capacity does not change. · Check lubricant for conreceiver drier outlet and (Compressor stroke is set at D tamination. inlet. Outlet temperature is maximum.) extremely low. Liquid tank inlet and expansion valve are frosted. • Temperature of expansion High-pressure pipe located · Check and repair malfuncvalve inlet is extremely low between receiver drier and tioning parts. as compared with areas Check lubricant for conexpansion valve is clogged. near liquid tank. tamination. Expansion valve inlet may be frosted. Temperature difference AC353A occurs somewhere in highpressure side Expansion valve and liquid Check refrigerant for leaks. Low refrigerant charge Refer to "Checking Refrigertank are warm or only cool when touched. ant Leaks", HA-207. Leaking fittings or components There is a big temperature Expansion valve closes a Remove foreign particles difference between expanby using compressed air. little compared with the sion valve inlet and outlet specification. · Check lubricant for contamination. while the valve itself is 1. Improper expansion valve frosted. adjustment 2. Malfunctioning thermal valve 3. Outlet and inlet may be clogged. Low-pressure pipe is clogged · Check and repair malfunc-An area of the low-pressure pipe is colder than areas or crushed. tioning parts. near the evaporator outlet. · Check lubricant for contamination.

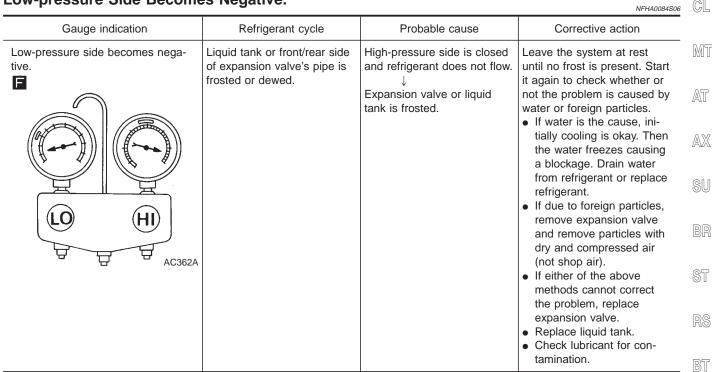
Air flow volume is not

enough or is too low.

Evaporator is frozen.

Compressor discharge capacity does not change. (Compressor stroke is set at

maximum length.)

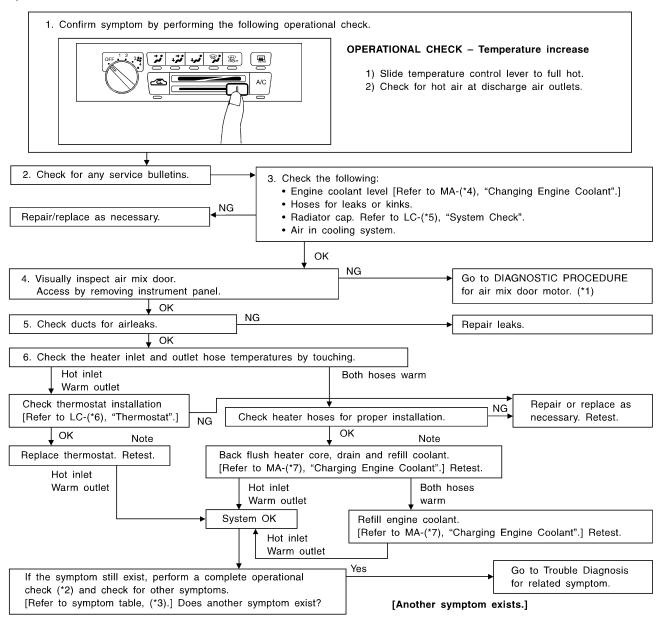

Replace compressor.

Low-pressure Side Sometimes Becomes Negative.

			NFHA0084S05	
Gauge indication	Refrigerant cycle	Probable cause	Corrective action	GI
Low-pressure side sometimes becomes negative.	 Air conditioning system does not function and does not cyclically cool the compartment air. The system constantly functions for a certain period of time after compressor is stopped and restarted. 	Refrigerant does not discharge cyclically. Moisture is frozen at expansion valve outlet and inlet. Water is mixed with refrigerant.	 Drain water from refrigerant or replace refrigerant. Replace liquid tank. 	MA EM
				LC EC
AC354A				FE

Low-pressure Side Becomes Negative.

HA


Insufficient Heating

TROUBLE DIAGNOSIS PROCEDURE FOR INSUFFICIENT HEATING Symptom:

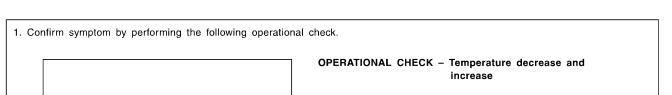
=NFHA0140

Insufficient Heating.

Inspection Flow

RHA444H

*1: HA-179 *2: HA-155 *3: HA-154 *4: MA-14 *5: LC-9 *6: LC-14 *7: MA-14


Air Mix Door

TROUBLE DIAGNOSIS PROCEDURE FOR AIR MIX DOOR MOTOR SYMPTOM:

=NFHA0256

• Air mix door motor does not operate normally. INSPECTION FLOW

MA

FE

LC

EC

GL

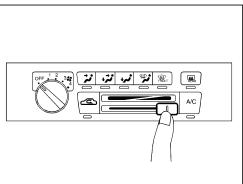
MT

AT

AX

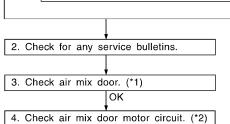
SU

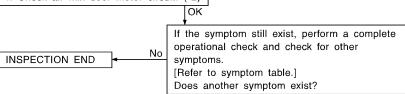
ST


BT

HA

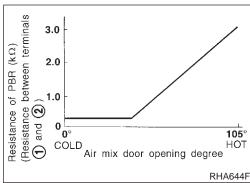
SC

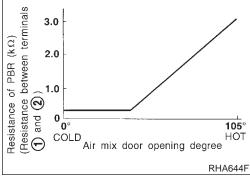

EL

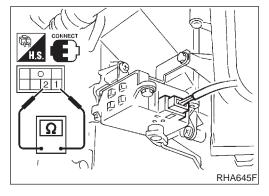

- 1. Check Temperature Decrease
- a) Slide temperature control lever to full cold.
- b) Check for cold air at discharge air outlets.

- 2. Check Temperature Increase
- a) Slide temperature control lever to full hot.
- b) Check for hot air at discharge air outlets.

If OK (symptom cannot be duplicated). Perform complete operational check. (*3) If NG (symptom is confirmed), continue with STEP-2 following.




Go to Trouble Diagnosis for related symptom.


[Another symptom exists.]

exists.]

SHA335F

CONTROL SYSTEM INPUT COMPONENT PBR

NFHA0258

NFHA0258S01 Measure resistance between terminals 1 and 2 at vehicle harness

DIAGNOSTIC PROCEDURE SYMPTOM:

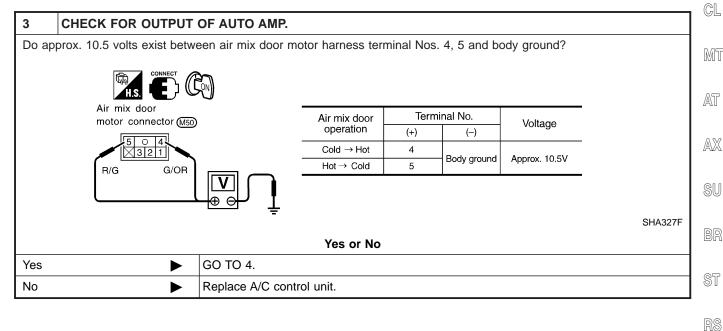
=NFHA0259

GI

MA

EM

LC

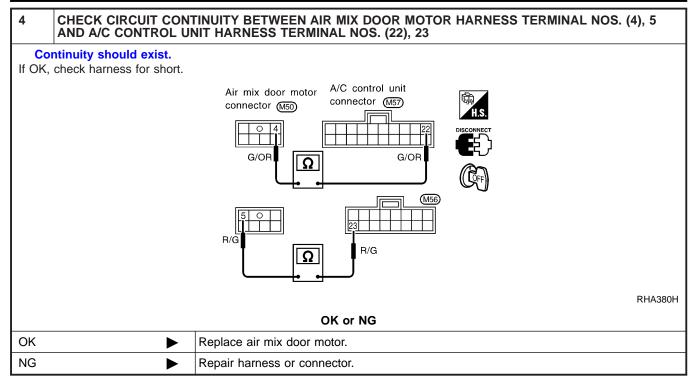

EG

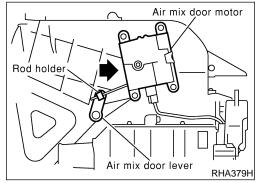
FE

• Air mix door motor does not operate normally.

1 CHECK POWER SUPPLY FOR A/C CONTROL UNIT.		
Refer to "MAIN POWER SUPPLY AND GROUND CIRCUIT CHECK", HA-158.		
OK or NG		
•	GO TO 2.	
>	Repair or replace.	
	to "MAIN POWER SUPPLY	

2	CHECK PBR		
Refer to HA-180.			
OK or NG			
OK		•	GO TO 3.
NG		•	Replace air mix door motor.




BT

HA

SC

EL

CONTROL LINKAGE ADJUSTMENT

Air Mix Door

NFHA0257

NFHA0257S01

- 1. Install air mix door motor on heater unit and connect it to main harness.
 - Make sure lever of air mix door is fitted into the slit of the air mix door link.
- 2. Turn ignition switch to ON.
- 3. Slide temperature control lever to full cold.
- 4. Check that air mix door operates properly when temperature control lever is slid to full hot and full cold.

Mode Door

TROUBLE DIAGNOSIS PROCEDURE FOR MODE DOOR Symptom:

=NFHA0142

LC

EC

FE

GL

MT

AT

AX

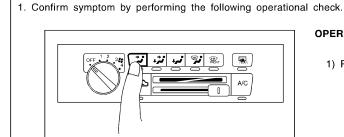
SU

ST

BT

HA

SC

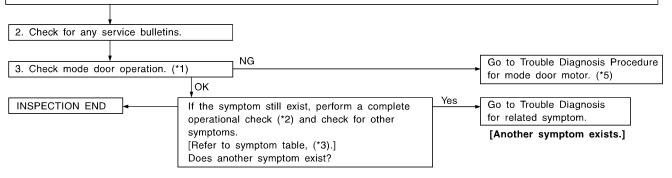

EL

Air outlet does not change.

Discharge air flow

111

MA Inspection Flow



OPERATIONAL CHECK - Discharge air.

1) Push mode switch.

Mode door/distribution Mode switch Face Foot Defroster 100% 60% 40% 80% 20% 60% 40%

2) Confirm that discharge air comes out according to the air distribution table at left. Refer to "Discharge Air Flow" in "DESCRIPTION" (*4).

RHA445H

*1: HA-185

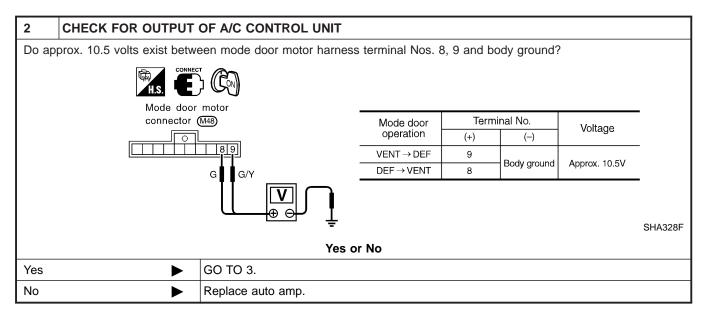
*3: HA-154 *4: HA-145

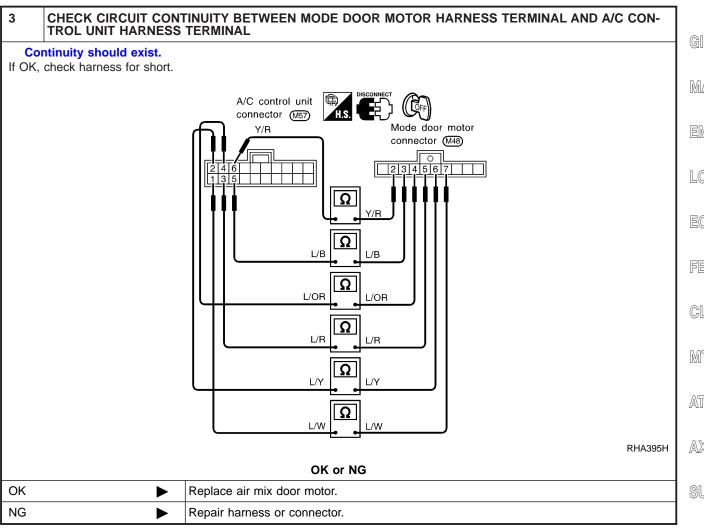
100%

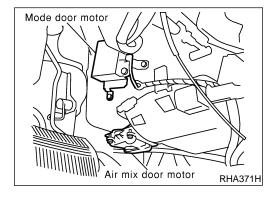
*5: HA-184

*2: HA-155

[DX


DIAGNOSTIC PROCEDURE


SYMPTOM:


=NFHA0260

Mode door motor does not operate normally.

1	CHECK POWER SUPPLY FOR A/C CONTROL UNIT	
Refer to "MAIN POWER SUPPLY AND GROUND CIRCUIT CHECK", HA-158.		
OK or NG		
OK	•	GO TO 2.
NG	•	Repair or replace.

CONTROL LINKAGE ADJUSTMENT

Mode Door

NFHA0151S01 Install mode door motor on heater unit and connect it to main harness.

Make sure lever of mode door motor is fitted into the slit of mode door link.

Turn ignition switch to ON. 2.

Turn VENT switch ON.

Turn DEF switch ON. Check that slide link operates at the fullopen position.

Also turn DEF switch ON to check that slide link operates at the fully-open position.

MA

LC

EC

FE

GL

MT

AT

AX

SU

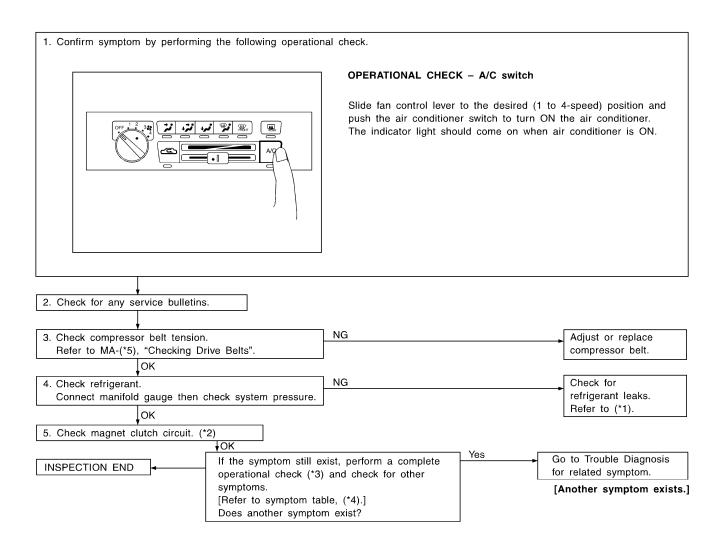
ST

BT

HA

SC

EL



Magnet Clutch

TROUBLE DIAGNOSIS PROCEDURE FOR MAGNET CLUTCH Symptom:

=NFHA0119

Magnet clutch does not operate when A/C switch and fan switch are ON.
 Inspection Flow

RHA446H

*5: MA-13

*1: HA-207 *2: HA-187 *3: HA-155

*4: HA-154

DIAGNOSTIC PROCEDURE

SYMPTOM:

 Magnet clutch does not engage when A/C switch and fan switch are ON.

MA

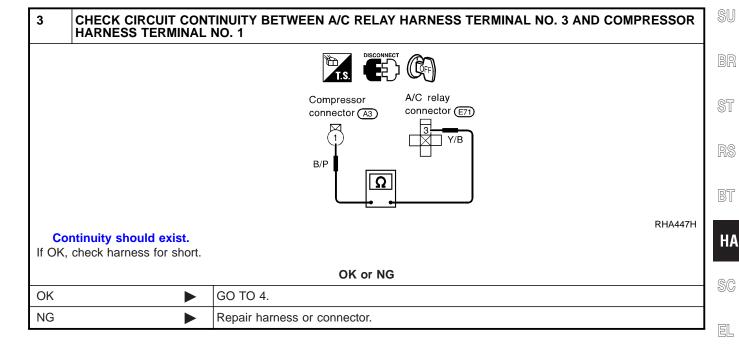
LC

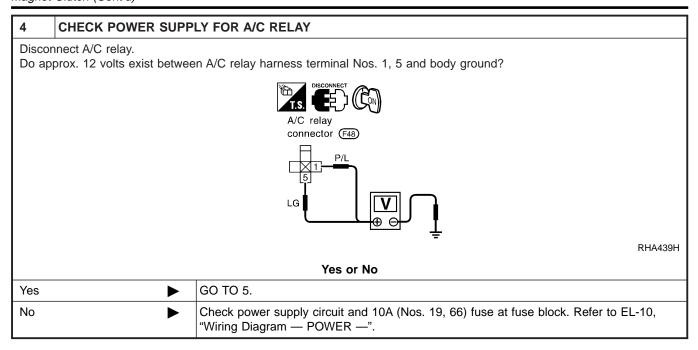
EC

FE

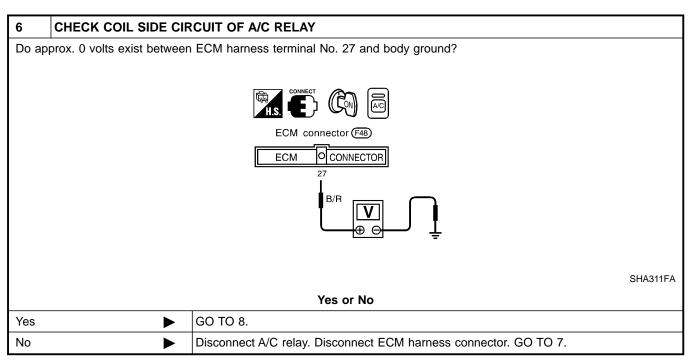
GL

MT


AT

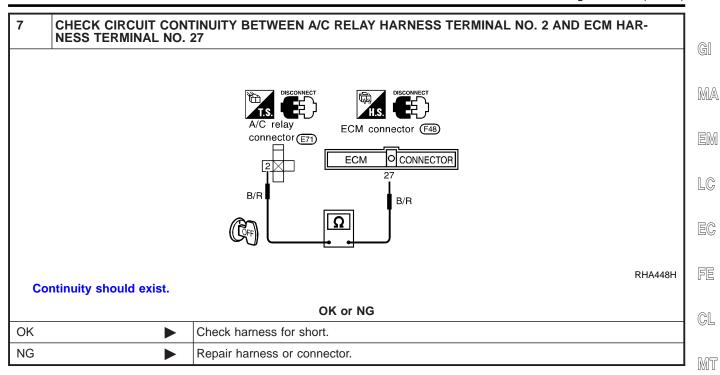

AX

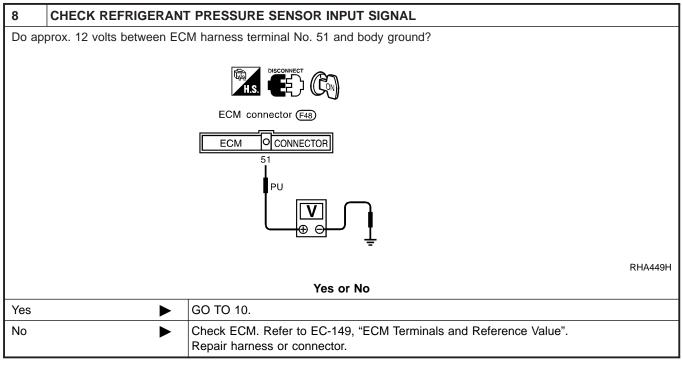
=NFHA0091



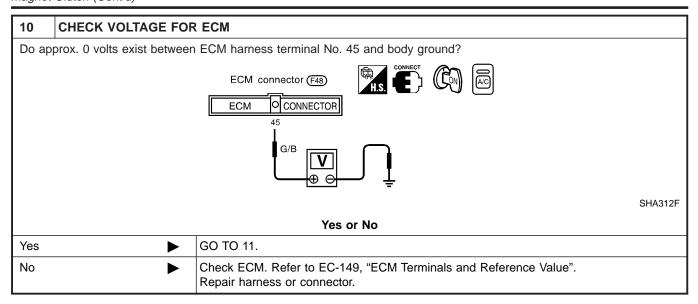
2	CHECK MAGNET CLUTCH COIL		
OK or NG			
NG	NG Replace magnet clutch. Refer to HA-200.		

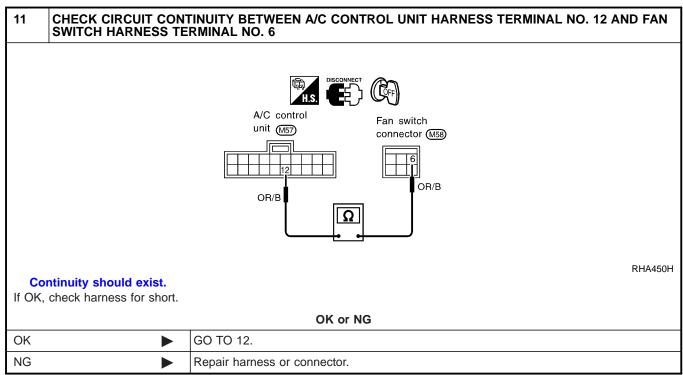
5	CHECK A/C RELAY AFTER DISCONNECTING IT		
Refer	Refer to HA-192.		
	OK or NG		
OK	•	Reconnect A/C relay. GO TO 6.	
NG	>	Replace A/C relay.	


AT


AX

SU


ST

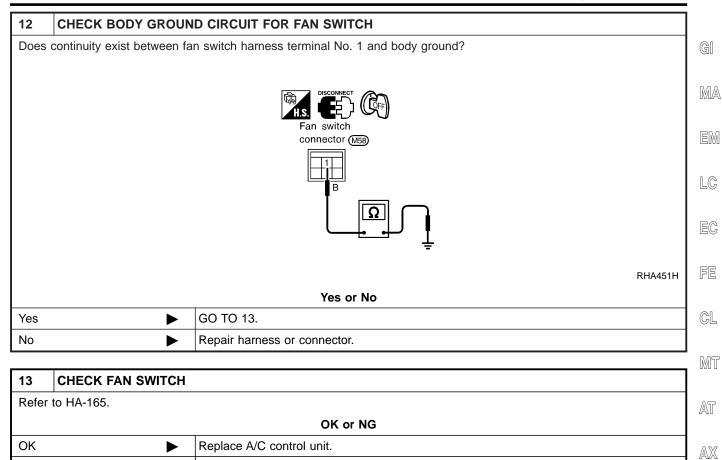

HA

9	9 CHECK REFRIGERANT PRESSURE SENSOR		SC	
Refer	Refer to HA-192.			
	OK or NG			EL
OK	•	Disconnect A/C switch harness connector. GO TO 10.		
NG	>	Replace refrigerant pressure sensor.		

SU

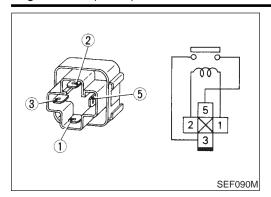
BR

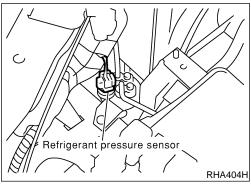
ST

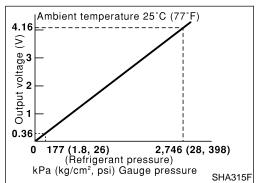

RS

BT

HA


SC


EL



Replace fan switch.

NG

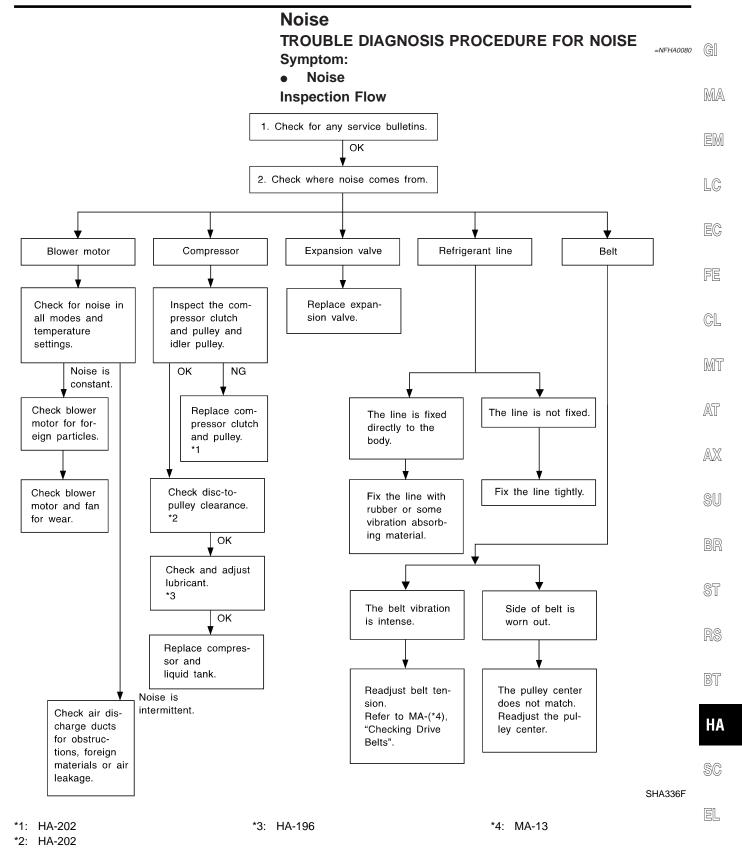
ELECTRICAL COMPONENTS INSPECTION A/C Relay

=NFHA0092

NFHA0092S07

Check continuity between terminal Nos. 3 and 5.

Conditions	Continuity
12V direct current supply between terminal Nos. 1 and 2	Yes
No current supply	No


If NG, replace relay.

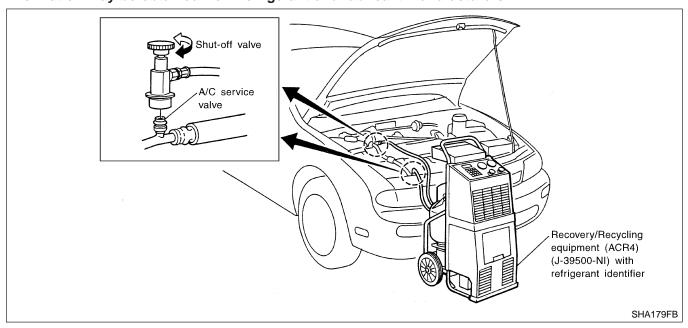
Refrigerant Pressure Sensor

Make sure that higher A/C refrigerant pressure results in higher refrigerant-pressure sensor output voltage.

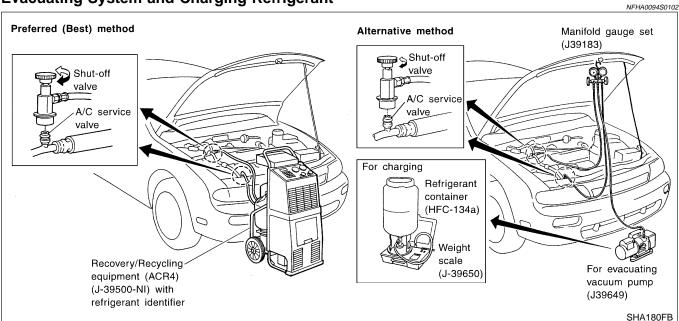
	OFF kPa (kg/cm², psi)
Low-pressure side	Decreasing to 0.18 (0.00184, 0.03)
High-pressure side	Increasing to 2.74 (0.0279, 0.40)

HFC-134a (R-134a) Service Procedure

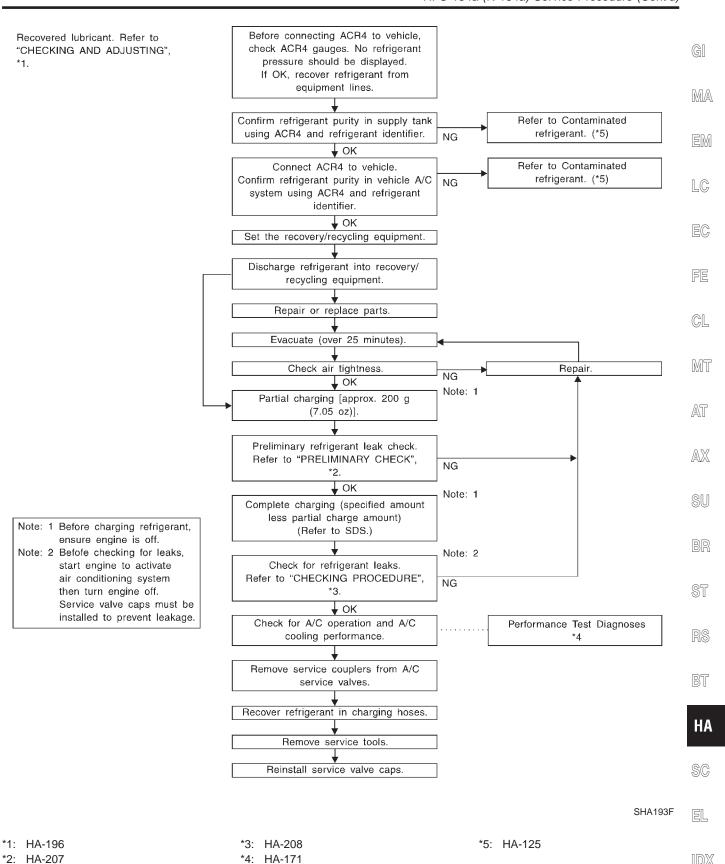
SETTING OF SERVICE TOOLS AND EQUIPMENT


NFHA0094 NFHA0094S01

Discharging Refrigerant


NFHA0094S0101

WARNING:


Avoid breathing A/C refrigerant and lubricant vapor or mist. Exposure may irritate eyes, nose and throat. Remove HFC-134a (R-134a) from A/C system using certified service equipment meeting requirements of SAE J2210 (R-134a recycling equipment) or J2209 (R-134a recovery equipment). If accidental system discharge occurs, ventilate work area before resuming service. Additional health and safety information may be obtained from refrigerant and lubricant manufacturers.

Evacuating System and Charging Refrigerant

HFC-134a (R-134a) Service Procedure (Cont'd)

Maintenance of Lubricant Quantity in Compressor

NFHA0095

The lubricant in the compressor circulates through the system with the refrigerant. Add lubricant to compressor when replacing any component or after a large gas leakage occurred. It is important to maintain the specified amount. If lubricant quantity is not maintained properly, the following malfunctions may result:

- Lack of lubricant: May lead to a seized compressor
- Excessive lubricant: Inadequate cooling (thermal exchange interference)

LUBRICANT

NFHA0095S01

Name: Nissan A/C System Oil Type S

Part number: KLH00-PAGS0

CHECKING AND ADJUSTING

NFHA0095S02

Adjust the lubricant quantity according to the test group shown below.

1	LUBRICANT RETURN OPERATION	
Can lubricant return operation be performed? • A/C system works properly. • There is no evidence of a large amount of lubricant leakage. Yes or No		
Yes	>	GO TO 2.
No	>	GO TO 3.

2 PERFORM LUBRICANT RETURN OPERATION, PROCEEDING AS FOLLOWS

1. Start engine, and set the following conditions:

Test condition

Engine speed: Idling to 1,200 rpm

A/C or AUTO switch: ON Blower speed: Max. position

Temp. control: Optional [Set so that intake air temperature is 25 to 30°C (77 to 86°F).]

2. Next item is for V-6 compressor. Connect the manifold gauge, and check that the high pressure side pressure is 588 kPa (6 kg/cm², 85 psi) or higher.

If less than the reference level, attach a cover to the front face of the condenser to raise the pressure.

- 3. Perform lubricant return operation for about 10 minutes.
- 4. Stop engine.

CAUTION:

If excessive lubricant leakage is noted, do not perform the lubricant return operation.

▶ GO TO 3.

3	CHECK COMPRESSOR		
Should the compressor be replaced?			
	Yes or No		
Yes ▶ GO TO HA-198.			
. 00	•		

MANUAL

Maintenance of Lubricant Quantity in Compressor (Cont'd)

4	CHECK ANY PART	
Is there any part to be replaced? (Evaporator, condenser, liquid tank or in case there is evidence of a large amount of lubricant leakage.)		
Yes or No		
Yes	•	GO TO HA-198.
No	>	Carry out the A/C performance test.

G[

MA

EM

LC

EC

FE

CL

MT

AT

 $\mathbb{A}\mathbb{X}$

SU

BR

ST

RS

BT

НА

SC

EL

Lubricant Adjusting Procedure for Components Replacement Except Compressor

After replacing any of the following major components, add the correct amount of lubricant to the system. Amount of lubricant to be added

Part replaced	Lubricant to be added to system	Remarks	
r att teptaced	Amount of lubricant mℓ (US fl oz, Imp fl oz)		
Evaporator	75 (2.5, 2.6)	_	
Condenser	75 (2.5, 2.6)	_	
Liquid tank	5 (0.2, 0.2)	Add if compressor is not replaced. *1	
In case of refrigerant	30 (1.0, 1.1)	Large leak	
leak	_	Small leak *2	

^{*1:} If compressor is replaced, addition of lubricant is included in the table.

Lubricant Adjustment Procedure for Compressor Replacement

- Before connecting ACR4 to vehicle, check ACR4 gauges. No refrigerant pressure should be displayed. If OK, recover refrigerant from equipment lines.
- 2. Confirm refrigerant purity in supply tank using ACR4 and refrigerant identifier. If NG, refer to "CONTAMINATED REFRIGERANT", HA-125.
- 3. Connect ACR4 to vehicle. Confirm refrigerant purity in vehicle A/C system using ACR4 and refrigerant identifier. If NG, refer to "CONTAMINATED REFRIGERANT", HA-125.
- Discharge refrigerant into the refrigerant recovery/recycling equipment. Measure lubricant discharged into the recovery/ recycling equipment.
- 5. Remove the drain plug of the "old" (removed) compressor. Drain the lubricant into a graduated container and record the amount of drained lubricant.
- 6. Remove the drain plug and drain the lubricant from the "new" compressor into a separate, clean container.
- Measure an amount of new lubricant installed equal to amount drained from "old" compressor. Add this lubricant to "new" compressor through the suction port opening.
- 8. Measure an amount of new lubricant equal to the amount recovered during discharging. Add this lubricant to "new" compressor through the suction port opening.
- 9. Torque the drain plug.

V-6 compressor:

18 - 19 N·m (1.8 - 1.9 kg-m, 13 - 14 ft-lb)

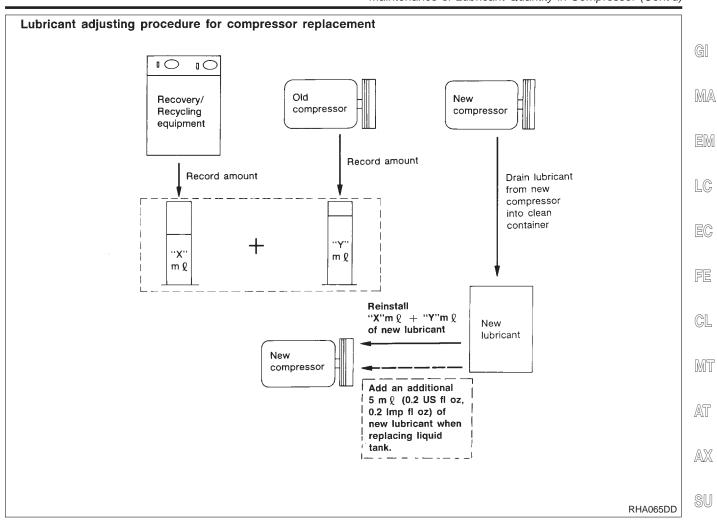
10. If the liquid tank also needs to be replaced, add an additional 5 m ℓ (0.2 US fl oz, 0.2 Imp fl oz) of lubricant at this time. Do not add this 5 mℓ (0.2 US fl oz, 0.2 Imp fl oz) of lubricant if only replacing the compressor.

^{*2:} If refrigerant leak is small, no addition of lubricant is needed.

BR

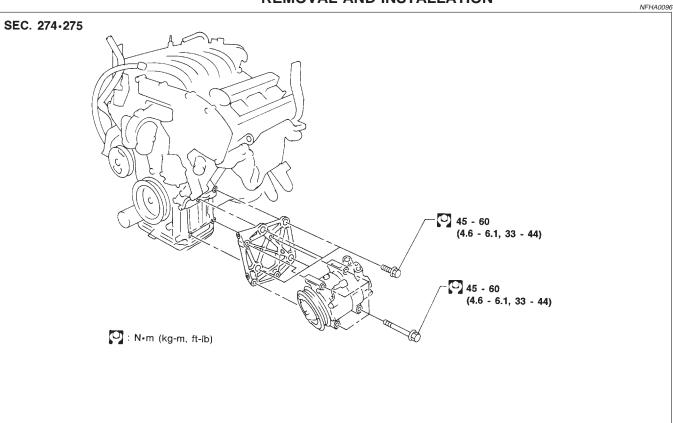
ST

RS


BT

HA

SC

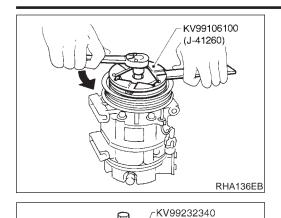

EL

Maintenance of Lubricant Quantity in Compressor (Cont'd)

RHA463E

CompressorREMOVAL AND INSTALLATION

Compressor Clutch OVERHAUL


SEC. 274

Center bolt

The state of the stat

MANUAL

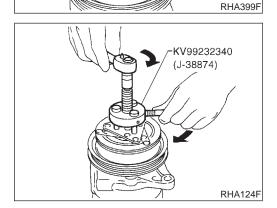
Compressor Clutch (Cont'd)

(J-38874)

REMOVAL

When removing center bolt, hold clutch disc with clutch disc wrench.

MA


EM

LC

EC

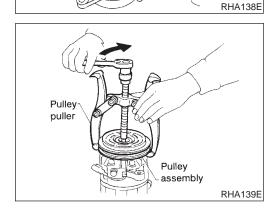
GL

MT

External snap ring pliers

Remove the clutch disc using the clutch disc puller. Insert the holder's three pins into the holes in the clutch disc. Rotate the holder clockwise to hook it onto the plate. Then, tighten the center bolt to remove the clutch disc.

After removing the clutch disc, remove the shims from either AX the drive shaft or the clutch disc.


ST

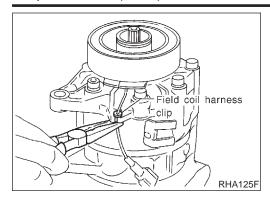
Remove the snap ring using external snap ring pliers.

BT

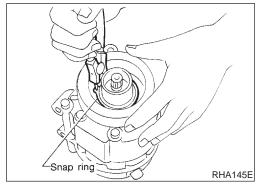
HA

∠Snap ring

Pulley removal


Position the center pulley puller on the end of the drive shaft, and remove the pulley assembly using any commercially available pulley puller.

To prevent the pulley groove from being deformed, the puller claws should be positioned onto the edge of the pulley assembly.



SC

[DX

Remove the field coil harness clip using a pair of pliers.

Remove the snap ring using external snap ring pliers.

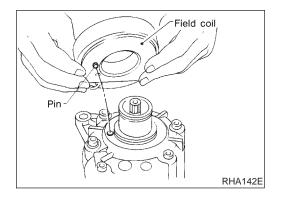
INSPECTION

NFHA0099

Clutch Disc

If the contact surface shows signs of damage due to excessive heat, replace clutch disc and pulley.

Pullev


NFHA0099S0

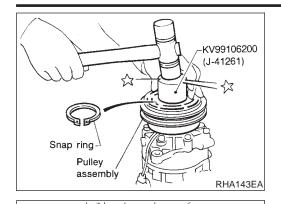
Check the appearance of the pulley assembly. If the contact surface of pulley shows signs of excessive grooving, replace clutch disc and pulley. The contact surfaces of the pulley assembly should be cleaned with a suitable solvent before reinstallation.

Coil

NFHA0099S03

Check coil for loose connection or cracked insulation.

INSTALLATION


NFHA0100

Install the field coil.

Be sure to align the coil's pin with the hole in the compressor's front head.

Install the field coil harness clip using a screwdriver.

Compressor Clutch (Cont'd)

Shim

Clutch disc

0.3 - 0.6 mm (0.012 - 0.024 in) Install the pulley assembly using the installer and a hand press, and then install the snap ring using snap ring pliers.

GI

MA

LC

Install the clutch disc on the drive shaft, together with the original shim(s). Press the clutch disc down by hand.

EC

GL

MT

AT

Using the holder to prevent clutch disc rotation, tighten the bolt to 14 N·m (1.4 kg-m, 10 ft-lb) torque. After tightening the bolt, check that the pulley rotates

AX

Check clearance around the entire periphery of clutch disc. **Disc-to-pulley clearance:**

ST

0.3 - 0.6 mm (0.012 - 0.024 in)

If the specified clearance is not obtained, replace adjusting spacer and readjust.

BT

RS

HA

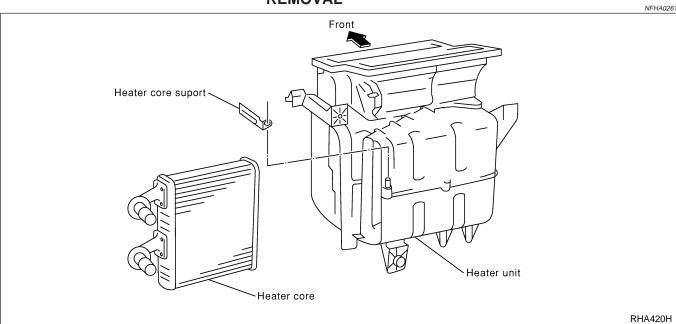
SC

smoothly.

When replacing compressor clutch assembly, always carry out the break-in operation. This is done by engaging and disengaging the clutch about thirty times. Break-in operation raises the level of transmitted torque.

RHA127F

RHA086E


RHA087E

Pulley assembly

orque wrench

Feeler gauge

Heater Unit (Heater Core) REMOVAL

- 1. Drain the cooling system. Refer to MA-14, "Changing Engine Coolant".
- 2. Disconnect the two heater hoses from inside the engine compartment.
- 3. Remove the blower and cooling unit. Refer to HA-205.
- 4. Remove the steering member assembly. Refer to BT-28, "Removal and Installation".
- 5. Remove the heater unit.
- 6. Remove the heater core.

INSTALLATION

NFHA0262

Installation is basically the reverse order of removal.

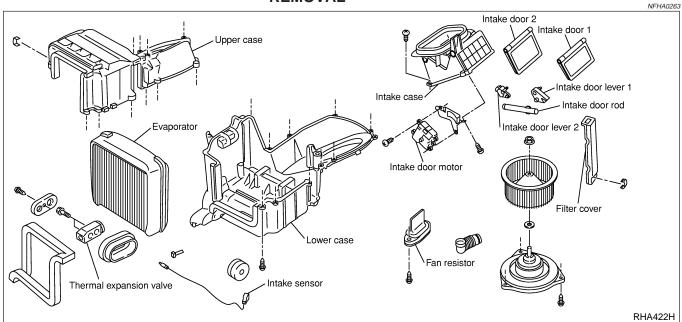
When filling radiator with coolant, refer to MA-14, "Changing Engine Coolant".

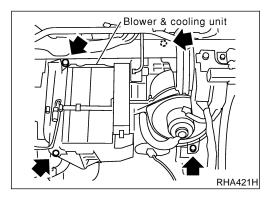
GI

MA

EM

LC


EC


FE

GL

MT

Blower and Cooling Unit (A/C Evaporator) REMOVAL

- 1. Discharge the A/C system. Refer to HA-194.
- 2. Disconnect the two refrigerant lines from the engine compartment.
 - Cap the A/C lines to prevent moisture from entering the system.
- 3. Remove the glove box and mating trim. Refer to BT-28, "Removal and Installation".
- 4. Disconnect the thermal amp. connector.
- 5. Disconnect the fan resistor and blower motor connector.
- Remove the blower and cooling unit.
- 7. Separate the blower and cooling unit case, and remove the evaporator.

INSTALLATION

Installation is basically the reverse order of removal.

Recharge the A/C system. Refer to HA-194.

SU

 $\mathbb{A}\mathbb{X}$

ם נוכבו

ST

NFHA0264

KS

BT

HA

SC

EL

Refrigerant Lines

REMOVAL AND INSTALLATION

: N•m (kg-m, in-lb) : N•m (kg-m, ft-lb)

: 2.9 - 5.9 (0.29 - 0.61, 26 - 52)

: 15 - 24 (1.5 - 2.4, 11 - 18)

: 7.8 - 19.6 (0.78 - 2.00, 68 - 173)

Α

В

C

Refer to page HA-126 regarding "Precautions for Refrigerant Connection".

=NFHA0101

RHA423HC

CHECKING REFRIGERANT LEAKS Preliminary Check

=NFHA0102

-/4

Perform a visual inspection of all refrigeration parts, fittings, hoses, and components for signs of A/C lubricant leakage, damage and corrosion. Take note of the areas with A/C lubricant leakage to allow extra time in these areas with electronic leak detector.

MA

LG

Precautions for Handling Leak Detector

When performing a refrigerant leak check, use a J-41995 A/C leak detector or equivalent. Ensure that the instrument is calibrated and set properly per the operating instructions.

The leak detector is a delicate device. In order to use the leak detector properly, read the operating instructions and perform any

nny

specified maintenance.

Other gases in the work area or substances on the A/C components, for example, anti-freeze, windshield washer fluid, solvents and lubricants, may falsely trigger the leak detector. Make sure the surfaces to be checked are clean. Clean with a dry cloth or blow off with shop air. Do not allow the sensor tip of the detector to contact with any substance.

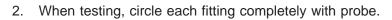
MT

This can also cause false readings and may damage the detector.

W M

 $\mathbb{A}\mathbb{X}$

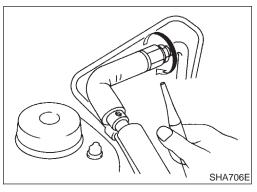
BR


Position probe approximately 5 mm (3/16 in) away from point

ST

38

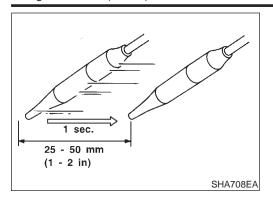
BT


НА

SC

EL

 $\mathbb{D}\mathbb{X}$



Approx.

5 mm (3/16 in)

SHA707EA

to be checked.

Move probe along component approximately 25 to 50 mm (1 to 2 in)/sec.

Checking Procedure

NEH40102S03

To prevent inaccurate or false readings, make sure there is no refrigerant vapor, shop chemicals, or cigarette smoke in the vicinity of the vehicle. Perform the leak test in calm area (low air/wind movement) so that the leaking refrigerant is not dispersed.

- 1. Turn engine off.
- 2. Connect a suitable A/C manifold gauge set to the A/C service ports.
- Check if the A/C refrigerant pressure is at least 345 kPa (3.52 kg/cm², 50 psi) above 16°C (61°F). If less than specification, recover/evacuate and recharge the system with the specified amount of refrigerant.

NOTE:

At temperatures below 16°C (61°F), leaks may not be detected since the system may not reach 345 kPa (3.52 kg/cm², 50 psi).

4. Conduct the leak test from the high side (compressor discharge a to evaporator inlet e) to the low side (evaporator discharge e to shaft seal j). Refer to HA-206. Perform a leak check for the following areas carefully. Clean the component to be checked and move the leak detector probe completely around the connection/component.

Compressor

Check the fitting of high and low pressure hoses, relief valve and shaft seal.

Liquid tank

Check the pressure switch, tube fitting, weld seams and the fusible plug mount.

Service valves

Check all around the service valves. Ensure service valve caps are secured on the service valves (to prevent leaks).

NOTE:

After removing A/C manifold gauge set from service valves, wipe any residue from valves to prevent any false readings by leak detector.

Cooling unit (Evaporator)

With engine OFF, turn blower fan on "High" for at least 15 seconds to dissipate any refrigerant trace in the cooling unit. Wait a minimum of 10 minutes accumulation time (refer to the manufacturer's recommended procedure for actual wait time) before inserting the leak detector probe into the drain hose. Keep the probe inserted for at least ten seconds. Use caution not to contaminate the ptobe tip with water or dirt that may be in the drain hose.

Refrigerant Lines (Cont'd)

If a leak detector detects a leak, verify at least once by blowing compressed air into area of suspected leak, then repeat check as outlined above.

Do not stop when one leak is found. Continue to check for additional leaks at all system components. If no leaks are found, perform steps 7 - 10.

MA

- Start engine.
- Set the heater A/C control as follows:

1) A/C switch ON.

2) Face mode

Recirculation switch ON 3)

LC

Max cold temperature Fan speed high

EC

Run engine at 1,500 rpm for at least 2 minutes.

10. Turn engine off and perform leak check again following steps 4 through 6 above.

GL

MT

Pressure in high pressure line Pressure Pressure in low pressure line Time Compressor Compressor starts. stops. SHA839E Refrigerant leaks should be checked immediately after stopping the engine. Begin with the leak detector at the compressor. The pressure on the high pressure side will gradually drop after refrigerant circulation stops and pressure on the low pressure side will gradually rise, as shown in the graph. Some leaks are more easily detected when pressure is high.

11. Before connecting ACR4 to vehicle, check ACR4 gauges. No refrigerant pressure should be displayed. If pressure is displayed, recover refrigerant from equipment lines and then check refrigerant purity.

12. Confirm refrigerant purity in supply tank using ACR4 and refrigerant identifier.

13. Confirm refrigerant purity in vehicle A/C system using ACR4 and refrigerant identifier.

14. Discharge A/C system using approved refrigerant recovery equipment. Repair the leaking fitting or component as neces-

HA

15. Evacuate and recharge A/C system and perform the leak test to confirm no refrigerant leaks.

SC

16. Conduct A/C performance test to ensure system works properly.

EL

Belt

Belt

TENSION ADJUSTMENT

• Refer to MA-13, "Checking Drive Belt".

NFHA0103

Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve INSPECTION

NFHA0104

• Refer to EC-505, "Description".

SERVICE DATA AND SPECIFICATIONS (SDS)

	M	lanual		
COMPRESSOR				NFHA0105
Model			CALSONIC make V-6	
Туре			V-6 variable displacement	
Displacement	1	Max.	184 (11.228)	
cm ³ (cu in)/rev.	1	Min.	14.5 (0.885)	
Cylinder bore x stroke mm (in)			37 (1.46) x [2.3 - 28.6 (0.091 - 1.126)]	
Direction of rotation			Clockwise (viewed from drive end)	
Drive belt			Poly V	
LUBRICANT		·		NFHA0106
Model			CALSONIC make V-6	
Name			Nissan A/C System Oil Type S	
Part number			KLH00-PAGS0	
Capacity mℓ (US fl oz, Imp fl oz)	Total in system		200 (6.8, 7.0)	
	Compressor (Service p amount	art) charging	200 (6.8, 7.0)	
REFRIGERANT				NFHA0107
Туре			HFC-134a (R-134a)	
Capacity kg (lb)			0.60 - 0.70 (1.32 - 1.54)	

ENGINE IDLING SPEED (WHEN A/C IS ON)

• Refer to EC-505, "Description".

BELT TENSION

Refer to MA-13, "Checking Drive Belt".

NFHA0108

BR

NFHA0109

ST

RS

BT

НА

SC

EL

SERVICE DATA AND SPECIFICATIONS (SDS)